‘記事’ カテゴリーのアーカイブ

LASIKと再近視化―眼軸長変化の観点から―

2017年10月31日 火曜日

LASIKと再近視化─眼軸長変化の観点から─RegressionandChangeinAxialLengthafterLASIK山村陽*はじめにエキシマレーザーを用いた角膜屈折矯正手術としてlaserCinCsituCkeratomileusis(LASIK)(図1)がC2006年にわが国で認可されてから約C10年が経過した.日本白内障屈折矯正手術学会(JSCRS)のワーキンググループによると,2015年に国内で施行された屈折矯正手術のうち約C80%がLASIK,約C10%が後房型有水晶体眼内レンズのCICL(implantablecollamerlens)挿入術であったと報告1)している.QOV(qualityCofCvision)やCQOL(qualityCofClife)を向上させる手術として現在でも主流に施行されているCLASIKだが,ここ数年は消費者庁の注意喚起の影響などによりその取り巻く環境は激変し,有効性や安全性に対する懸念の広まりによって施行件数はピーク時のC1/10程度にまで減少したとされる.LASIKの目的は近視や乱視などの屈折異常を矯正し,良好な裸眼視力を獲得することにあるが,今回,LASIK術後の再近視化(近視進行)とその要因の一つとして考えられる「眼軸長変化」について解説する.CILASIK術後の再近視化(近視進行)一般に近視はC20代以降も進行することが知られており,たとえば,約C-3Dの近視はC10年間でC20代では約C-0.6D,30代では約C-0.4D,40代では約C-0.3D近視化することが報告2)されている.また,20代前半のコンタクトレンズユーザーではC5年間でC-1.0D以上の近視化が約C35%生じたという報告3)もある.図1LASIKフラップ作製後にエキシマレーザーを照射する.C筆者らが以前に行った屈折度数C-7.20±2.35D,年齢C35±8歳の症例(23眼)に対しCLASIKを施行した検討では,術後C6カ月.7年ではC-0.18±0.33Dの近視化が生じ,また屈折度数C-6.31±2.55D,年齢C37.1C±9.1歳の症例(54眼)に対しCLASIKを施行した別の検討では,術後C1.10年ではC-0.26±0.59Dの近視化が生じたとそれぞれ報告した4,5).また,Ali.らは屈折度数C-7.27±1.94D,年齢C33.2C±9.9歳の症例(97眼)に対しCLASIKを施行した検討では,術後C3カ月.10年ではC-1.04±1.73Dの近視化が生じたと報告6)している.強度近視眼に対するCLASIK術後の再近視化は,10年で約C-0.3.C-1.0Dぐらいであると考えられる.*KiyoshiYamamura:バプテスト眼科クリニック〔別刷請求先〕山村陽:〒606京都市左京区北白川上池田町C12バプテスト眼科クリニック0910-1810/17/\100/頁/JCOPY(49)C1387**2928.52827.52726.52625.52524.524****LASIK(>.6D)LASIK(≦.6D)ICLLASIK(>.6D)LASIK(≦.6D)ICL図2術前眼軸長眼軸長変化量(mm)眼軸長(mm)LASIK(>.6D)LASIK(≦.6D)ICL******2928.5術前眼軸長はC3群間に有意な差があった.**:p<0.01.C28**27.52726.5眼軸長(mm)0.3n.s.**0.250.20.152625.52524.50.1240.05期間(年)図3眼軸長変化術後眼軸長はCLASIK(>C-6D)群では変化がなく,LASIK図4術後5年の眼軸長変化量(≦-6D)群では術後C3年以降は変化がなかったが,ICLLASIK(>.6D)LASIK(≦.6D)ICLICL群はCLASIK群よりも有意に眼軸長が延長していた.群では術後C1年以降毎年延長していた.*:p<0.05,**:**:p<0.01.Cp<0.01.図6両眼開放オートレフラクトメータ図5遠視性軸外屈折水平方向の視野角がC10°間隔になるよう固視指標(C-30°,C近視進行には周辺網膜における遠視性軸外屈折が関与して-20°,C-10°,0°,10°,20°,30°)を眼前C50Ccmの位置に作製設置し,散瞳条件下に指標を順に注視させ屈折度いると考えられている.数(レフ値)を測定した.5等価球面度数:ー5.81±1.67D4)術前術後1カ月3(D数1.3420.81折度0.63屈外1.0.090.25.0.19**軸****相対的0.30度.20度.10度0度10度20度30度.1.0.10.0.25.0.60.0.51.2.1.10.0.84.3視野角(度)n=11図7LASIK術前後における軸外屈折術前の周辺網膜における遠視性軸外屈折は術後C1カ月では近視性軸外屈折に変化し,視野角C-30°,20°,30°では有意な差があった(**:p<0.01).図8近視性軸外屈折近視進行抑制には周辺網膜における近視性軸外屈折が関与していると考えられている.

高次収差と近視進行

2017年10月31日 火曜日

バイオレットライトと近視進行抑制VioletLightandSuppressionofMyopiaProgression鳥居秀成*はじめに世界の近視人口は増加の一途をたどっており,C-0.50D以下を近視,C-5.00D以下を強度近視と定義した場合,全世界の近視人口はC2050年には全世界人口のC49.8%のC47億C5800万人,失明リスクのある強度近視の人口はC9.8%のC9億C3800万人になると報告1)されている.日本国内でも,文部科学省平成C28年度学校保健統計調査結果によると,裸眼視力C1.0未満の割合が小学校・中学校・高校において昭和C54年以来過去最高を記録した.裸眼視力C1.0未満の原因疾患のすべてが近視というわけではないが,近視児童の増加が反映された結果であると思われる.この近視人口の世界的な急増は約C60年前からの変化であり2),人類の長い歴史から考えると,遺伝因子よりも環境因子の変化が主因であると考えられる.近視と関連する環境因子のうち,屋外活動が近視進行を抑制することがこれまで多くの疫学研究・介入研究から指摘されており3.11),近年,屋外活動の効果が注目されている.その屋外活動を構成する因子には,ビタミンCD12.14)・光環境15,16)などの因子が考えられており,そのうち何が効いているのか,またそのメカニズムはわかっていなかった.また,屋外活動というと身体活動量や運動量も想起されるが,運動量と近視には明確な関係性がない可能性が指摘されてきており7,17),さらに最近の研究により,ビタミンCDよりも光環境自体が重要である可能性が示唆されてきている18,19).以上より,近視進行を抑制する屋外活動を構成する因子のうち,屋外の光環境が注目されている.CIバイオレットライトとは?波長C360.400Cnmの光がバイオレットライトである(図1).JISCZC8120:2001は可視光下限をC360.nmと定義している.実際に人間はバイオレットライトの色を認識することは可能である(図2).CIIバイオレットライトと近視進行抑制近視の屈折矯正手術の一つである有水晶体眼内レンズ挿入術後の近視の戻りを調べる臨床研究を行っていたところ,筆者らはある一つのことに気がついた.成人を対象としたC5年間の後向き研究であるが,2種類の有水晶体眼内レンズ(ARTISANとCARTIFLEX,共にCOphtecBV社製)間で術前術後の眼軸長伸長程度に有意差を認めた20).そのレンズの違いは高次収差など21)いくつかあるが,眼軸長伸長の差はレンズがC360.400Cnmのバイオレットライトを透過させるか否かに依存している可能性に着目し,動物実験・臨床研究・環境調査を行い,バイオレットライトが近視進行を抑制する可能性を研究した22).C1.動物実験1978年にCWallmanら23)がヒヨコにゴーグルを装着することで近視になることを報告して以来,近視の動物実験ではヒヨコを用いることが一般的24.34)になっている.*HidemasaTorii:慶應義塾大学医学部眼科学教室〔別刷請求先〕鳥居秀成:〒160-8582東京都新宿区信濃町C35慶應義塾大学医学部眼科学教室0910-1810/17/\100/頁/JCOPY(33)C1371図1バイオレットライトとは?波長C360.400Cnmの光がバイオレットライトである.JISCZ8120:2001は可視光の短波長限界をC360.400Cnmと定義している.バイオレットライトは可視光に属する.太陽光にバイオレットライトが含まれている.図2可視光バイオレットライトの色左はカメラレンズのみで撮影した写真.中央はC400Cnm以下の波長をカットするレンズを通して撮影した写真(赤矢頭がレンズの縁),右はC400Cnm以上の波長をカットするフィルターを通して撮影した写真.右の写真がバイオレットライトのみでみた風景である.(文献C22より引用)abVL1009080706050403020100波長(nm)図3バイオレットライトとヒヨコ実験適過率(%)250300350400450500550600650700750800近視誘導には,バイオレットライトを透過する(Ca)ことを確認した凹レンズ効果をもつクリアレンズ(b)を使用し,片眼装用を行った.VL:バイオレットライト.(文献C22より引用)C43abEGR1の相対発現量*****3.0屈折値の変化(Diopter).5.10.15.2000.0VL.VL+VL.VL+ControlCoveredVL.VL+VL.VL+ControlCovered眼軸長の変化(mm)2.522.01.511.00.5VL.VL+VL.VL+ControlCovered図4ヒヨコ実験近視モデルにおけるバイオレットライトの近視進行抑制効果a:縦軸はC1週間の近視進行程度.Cb:縦軸はC1週間の眼軸長伸長程度を示す.レンズ装用をしていないコントロール眼(control),凹レンズ装用を行った遮蔽眼(Covered)ともに,バイオレットライト(VL)に暴露されたヒヨコ(VL+)は,暴露されていないヒヨコ(VLC-)に比べ,近視進行程度・眼軸長伸長程度が有意に抑制されていることがわかる.(文献C22より引用)図5近視進行抑制遺伝子EGR1の発現とバイオレットライト縦軸はヒヨコ網膜・脈絡膜組織におけるCEGR1CmRNA相対発現量を表す.レンズ装用をしていないコントロール眼(control),凹レンズ装用を行った遮蔽眼(Covered)ともに,バイオレットライト(VL)に暴露されたヒヨコ(VL+)は,暴露されていないヒヨコ(VLC-)に比べ,EGR1の発現が有意に上昇していることがわかる.(文献C22より引用)ab100808070適過率(%)10090適過率(%)60605040403020201000350400450500550600650350400450500550600650波長(nm)波長(nm)図6今回の臨床研究で用いたコンタクトレンズの波長透過特性バイオレットライトの透過率がC80%以上のコンタクトレンズ(Ca)を装用している群と,バイオレットライトの透過率がC80%未満のコンタクトレンズ(Cb)を装用している群にわけ,眼軸長伸長量を比較した.VL:バイオレットライト.(文献C22より引用)表1コンタクトレンズ装用開始時データ症例数人種年齢(歳)C他覚屈折値(ジオプター)C眼軸長(mm)C経過観察期間(日)C31例31眼日本人14.7±1.3(13.18)C-2.59±1.71(-1.00.C-6.38)C25.63±0.70(24.22.26.88)C892±374(372.1645)C116例C116眼C─15.1±1.4(13.18)C-2.47±1.72(-1.00.C-9.38)C25.76±0.99(C23.40.C28.10)C872±361(C380.C1814)C0.1050.7210.5510.833バイオレットライトをC80%以上透過するコンタクトレンズを装用している群をCVL+群,バイオレットライトの透過率がC80%未満のコンタクトレンズを装用している群をCVLC-群とし,両群間のコンタクトレンズ装用開始時のデータを比較した.年齢や屈折値,眼軸長,経過観察期間においてC2群間に有意差を認めず,ほぼ同じ背景の学生である.(文献C22より引用)C*眼軸長の変化量(mm/年)0.300.250.200.150.100.050.00VL.VL+図7図6の異なるバイオレットライト透過率のコンタクトレンズ装用による眼軸長変化量の比較バイオレットライトをC80%以上透過するコンタクトレンズを装用している群(VCL+群,1C16例C116眼)の眼軸長伸長量はC0.14.mm/年,バイオレットライトの透過率がC80%未満のコンタクトレンズを装用している群(CVLC-群,C31例31眼)の眼軸長伸長量はC0.19Cmm/年であり,CVL+群のほうが,有意に眼軸長伸長量が少なかった.(文献C22より引用)C2.001.80VL6:0010:0014:008:0012:0016:001.6018:001.401.201.000.800.600.400.200.00300350400450500550600650700750800波長(nm)図8屋外環境におけるバイオレットライト分光放射照度(W/m2/nm)真夏の東京における光環境を6.18時まで計測した.18時の日没に近い時間以外は,どの時間帯もバイオレットライトCVLが一定量存在することがわかる.(文献C22より引用)分光放射照度(W/m2/nm)1.60VLオフィス内車内1.40病院内1.201.000.800.600.400.200.00図9屋内環境におけるバイオレットライト300350400450500550600650700750800波長(nm)真夏の東京における日中の光環境を室内(オフィス内,車内,病院内)で計測した.最近のガラスは,400Cnm以下の光をカットするものが多く,バイオレットライト(VL)までカットされていることがわかる.そのため屋内環境ではCVLがほとんどない.(文献C22より引用)C0.200.180.160.140.120.100.080.060.040.020.00図10窓がない室内におけるバイオレットライト300350400450500550600650700750800波長(nm)窓がないため蛍光灯のみの波形であることがわかり,そのため時間による差を認めない.窓がない屋内環境ではどの時間帯でもバイオレットライト(VL)がほとんどない.(文献C22より引用)分光放射照度(W/m2/nm)TUNEL/DAPI角膜網膜ControlVL(365nm)UVB(305nm)図11ヒヨコ角膜・網膜におけるTUNEL染色陽性細胞の有無バイオレットライト(VL)による角膜・網膜障害の評価のため,アポトーシスによる細胞死の有無をCTUNEL染色を用いて評価した.昼行性動物であるヒヨコの実験系を用い,バイオレットライト(400C.W/cmC2)を1日12時間・7日間連続の照射を行った.その結果,UVB照射により角膜に認められたようなCTUNEL染色陽性細胞(赤色部分)は,バイオレットライト照射では認めず,アポトーシスによる細胞死を認めなかった.(文献C22より引用)

バイオレットライトと近視進行抑制

2017年10月31日 火曜日

バイオレットライトと近視進行抑制VioletLightandSuppressionofMyopiaProgression鳥居秀成*はじめに世界の近視人口は増加の一途をたどっており,C-0.50D以下を近視,C-5.00D以下を強度近視と定義した場合,全世界の近視人口はC2050年には全世界人口のC49.8%のC47億C5800万人,失明リスクのある強度近視の人口はC9.8%のC9億C3800万人になると報告1)されている.日本国内でも,文部科学省平成C28年度学校保健統計調査結果によると,裸眼視力C1.0未満の割合が小学校・中学校・高校において昭和C54年以来過去最高を記録した.裸眼視力C1.0未満の原因疾患のすべてが近視というわけではないが,近視児童の増加が反映された結果であると思われる.この近視人口の世界的な急増は約C60年前からの変化であり2),人類の長い歴史から考えると,遺伝因子よりも環境因子の変化が主因であると考えられる.近視と関連する環境因子のうち,屋外活動が近視進行を抑制することがこれまで多くの疫学研究・介入研究から指摘されており3.11),近年,屋外活動の効果が注目されている.その屋外活動を構成する因子には,ビタミンCD12.14)・光環境15,16)などの因子が考えられており,そのうち何が効いているのか,またそのメカニズムはわかっていなかった.また,屋外活動というと身体活動量や運動量も想起されるが,運動量と近視には明確な関係性がない可能性が指摘されてきており7,17),さらに最近の研究により,ビタミンCDよりも光環境自体が重要である可能性が示唆されてきている18,19).以上より,近視進行を抑制する屋外活動を構成する因子のうち,屋外の光環境が注目されている.CIバイオレットライトとは?波長C360.400Cnmの光がバイオレットライトである(図1).JISCZC8120:2001は可視光下限をC360.nmと定義している.実際に人間はバイオレットライトの色を認識することは可能である(図2).CIIバイオレットライトと近視進行抑制近視の屈折矯正手術の一つである有水晶体眼内レンズ挿入術後の近視の戻りを調べる臨床研究を行っていたところ,筆者らはある一つのことに気がついた.成人を対象としたC5年間の後向き研究であるが,2種類の有水晶体眼内レンズ(ARTISANとCARTIFLEX,共にCOphtecBV社製)間で術前術後の眼軸長伸長程度に有意差を認めた20).そのレンズの違いは高次収差など21)いくつかあるが,眼軸長伸長の差はレンズがC360.400Cnmのバイオレットライトを透過させるか否かに依存している可能性に着目し,動物実験・臨床研究・環境調査を行い,バイオレットライトが近視進行を抑制する可能性を研究した22).C1.動物実験1978年にCWallmanら23)がヒヨコにゴーグルを装着することで近視になることを報告して以来,近視の動物実験ではヒヨコを用いることが一般的24.34)になっている.*HidemasaTorii:慶應義塾大学医学部眼科学教室〔別刷請求先〕鳥居秀成:〒160-8582東京都新宿区信濃町C35慶應義塾大学医学部眼科学教室0910-1810/17/\100/頁/JCOPY(33)C1371図1バイオレットライトとは?波長C360.400Cnmの光がバイオレットライトである.JISCZ8120:2001は可視光の短波長限界をC360.400Cnmと定義している.バイオレットライトは可視光に属する.太陽光にバイオレットライトが含まれている.図2可視光バイオレットライトの色左はカメラレンズのみで撮影した写真.中央はC400Cnm以下の波長をカットするレンズを通して撮影した写真(赤矢頭がレンズの縁),右はC400Cnm以上の波長をカットするフィルターを通して撮影した写真.右の写真がバイオレットライトのみでみた風景である.(文献C22より引用)abVL1009080706050403020100波長(nm)図3バイオレットライトとヒヨコ実験適過率(%)250300350400450500550600650700750800近視誘導には,バイオレットライトを透過する(Ca)ことを確認した凹レンズ効果をもつクリアレンズ(b)を使用し,片眼装用を行った.VL:バイオレットライト.(文献C22より引用)C43abEGR1の相対発現量*****3.0屈折値の変化(Diopter).5.10.15.2000.0VL.VL+VL.VL+ControlCoveredVL.VL+VL.VL+ControlCovered眼軸長の変化(mm)2.522.01.511.00.5VL.VL+VL.VL+ControlCovered図4ヒヨコ実験近視モデルにおけるバイオレットライトの近視進行抑制効果a:縦軸はC1週間の近視進行程度.Cb:縦軸はC1週間の眼軸長伸長程度を示す.レンズ装用をしていないコントロール眼(control),凹レンズ装用を行った遮蔽眼(Covered)ともに,バイオレットライト(VL)に暴露されたヒヨコ(VL+)は,暴露されていないヒヨコ(VLC-)に比べ,近視進行程度・眼軸長伸長程度が有意に抑制されていることがわかる.(文献C22より引用)図5近視進行抑制遺伝子EGR1の発現とバイオレットライト縦軸はヒヨコ網膜・脈絡膜組織におけるCEGR1CmRNA相対発現量を表す.レンズ装用をしていないコントロール眼(control),凹レンズ装用を行った遮蔽眼(Covered)ともに,バイオレットライト(VL)に暴露されたヒヨコ(VL+)は,暴露されていないヒヨコ(VLC-)に比べ,EGR1の発現が有意に上昇していることがわかる.(文献C22より引用)ab100808070適過率(%)10090適過率(%)60605040403020201000350400450500550600650350400450500550600650波長(nm)波長(nm)図6今回の臨床研究で用いたコンタクトレンズの波長透過特性バイオレットライトの透過率がC80%以上のコンタクトレンズ(Ca)を装用している群と,バイオレットライトの透過率がC80%未満のコンタクトレンズ(Cb)を装用している群にわけ,眼軸長伸長量を比較した.VL:バイオレットライト.(文献C22より引用)表1コンタクトレンズ装用開始時データ症例数人種年齢(歳)C他覚屈折値(ジオプター)C眼軸長(mm)C経過観察期間(日)C31例31眼日本人14.7±1.3(13.18)C-2.59±1.71(-1.00.C-6.38)C25.63±0.70(24.22.26.88)C892±374(372.1645)C116例C116眼C─15.1±1.4(13.18)C-2.47±1.72(-1.00.C-9.38)C25.76±0.99(C23.40.C28.10)C872±361(C380.C1814)C0.1050.7210.5510.833バイオレットライトをC80%以上透過するコンタクトレンズを装用している群をCVL+群,バイオレットライトの透過率がC80%未満のコンタクトレンズを装用している群をCVLC-群とし,両群間のコンタクトレンズ装用開始時のデータを比較した.年齢や屈折値,眼軸長,経過観察期間においてC2群間に有意差を認めず,ほぼ同じ背景の学生である.(文献C22より引用)C*眼軸長の変化量(mm/年)0.300.250.200.150.100.050.00VL.VL+図7図6の異なるバイオレットライト透過率のコンタクトレンズ装用による眼軸長変化量の比較バイオレットライトをC80%以上透過するコンタクトレンズを装用している群(VCL+群,1C16例C116眼)の眼軸長伸長量はC0.14.mm/年,バイオレットライトの透過率がC80%未満のコンタクトレンズを装用している群(CVLC-群,C31例31眼)の眼軸長伸長量はC0.19Cmm/年であり,CVL+群のほうが,有意に眼軸長伸長量が少なかった.(文献C22より引用)C2.001.80VL6:0010:0014:008:0012:0016:001.6018:001.401.201.000.800.600.400.200.00300350400450500550600650700750800波長(nm)図8屋外環境におけるバイオレットライト分光放射照度(W/m2/nm)真夏の東京における光環境を6.18時まで計測した.18時の日没に近い時間以外は,どの時間帯もバイオレットライトCVLが一定量存在することがわかる.(文献C22より引用)分光放射照度(W/m2/nm)1.60VLオフィス内車内1.40病院内1.201.000.800.600.400.200.00図9屋内環境におけるバイオレットライト300350400450500550600650700750800波長(nm)真夏の東京における日中の光環境を室内(オフィス内,車内,病院内)で計測した.最近のガラスは,400Cnm以下の光をカットするものが多く,バイオレットライト(VL)までカットされていることがわかる.そのため屋内環境ではCVLがほとんどない.(文献C22より引用)C0.200.180.160.140.120.100.080.060.040.020.00図10窓がない室内におけるバイオレットライト300350400450500550600650700750800波長(nm)窓がないため蛍光灯のみの波形であることがわかり,そのため時間による差を認めない.窓がない屋内環境ではどの時間帯でもバイオレットライト(VL)がほとんどない.(文献C22より引用)分光放射照度(W/m2/nm)TUNEL/DAPI角膜網膜ControlVL(365nm)UVB(305nm)図11ヒヨコ角膜・網膜におけるTUNEL染色陽性細胞の有無バイオレットライト(VL)による角膜・網膜障害の評価のため,アポトーシスによる細胞死の有無をCTUNEL染色を用いて評価した.昼行性動物であるヒヨコの実験系を用い,バイオレットライト(400C.W/cmC2)を1日12時間・7日間連続の照射を行った.その結果,UVB照射により角膜に認められたようなCTUNEL染色陽性細胞(赤色部分)は,バイオレットライト照射では認めず,アポトーシスによる細胞死を認めなかった.(文献C22より引用)

病的近視の診断基準

2017年10月31日 火曜日

病的近視の診断基準De.nitionofPathologicMyopia横井多恵*大野京子*はじめに病的近視は近視の中の特異な病態であり,網膜や視神経の合併病変により矯正視力の低下をきたす.病的近視に伴うさまざまな眼合併症は,おもに東アジア諸国を中心とした世界の失明の主要な原因疾患である1).しかし,その重要性にもかかわらず,病的近視を示す用語や定義は,長らく国際的な統一見解が得られていなかった.用語に関しては,「強度近視」,「変性近視」,「悪性近視」「高度近視」が研究・調査報告で使用されてきた2).しかし,,「強度近視」という用語は,近視が単に強度に至った病態を示すもので,近視に伴う眼合併症から視覚障害に至る疾患概念を正確に反映していない.また,近視に伴う眼合併症が常に網脈絡膜の「変性」というわけではない.さらに「悪性近視」は,悪性の腫瘍性疾患を想起させるものであるし,強い近視を「高度近視」と定義すると,弱い近視は「低度近視」なるが,そのような用語はない.このため近年は,「病的近視」という用語が,もっとも適切な用語として普及するようになった.病的近視の定義に関しては,Duke-ElderやCurtinらによれば,「眼底後極部に変性を起こす,あるいは後部ぶどう腫がある近視」とされていた3).しかし実際には,眼底所見から病的近視を定義した研究・調査は近年まであまりなく,疫学調査や研究報告の多くが病的近視を屈折値に基づき定義してきた.さらに眼軸長測定が容易な時代になると,屈折値および眼軸長の両者を含めて病的近視を定義する報告が多くなった.しかし,屈折値や眼軸長による定義は,単に近視が強度に至った状態を示すものである.強度の近視のすべてが近視に伴うさまざまな眼合併症から視覚障害に至る病的近視とは限らず,屈折値や眼軸長のみのでは病的近視を定義するには不十分である.統一された基準を定めることで,国内外での調査研究間の比較を可能とするために,2015年の病的近視の国際メタ解析スタディ(theMeta-AnalysisforPathologicMyopiastudy:META-PM)では4),病的近視を「びまん性萎縮以上の萎縮性変化を眼底に有する,もしくは後部ぶどう腫を有する」眼であると定義した.しかし,一見このような眼底所見による病的近視の定義は理想的と考えられるが,問題は人種によっては網脈絡膜の萎縮性病変の観察が困難であったり,近視性眼底病変が後部ぶどう腫も含めて,加齢とともに出現することである.少なくともアジア人においては,眼底変化が生じる以前の若年者や小児の病的近視を見過ごす危険がある.このような若年例を適切に鑑別し,近視性眼底病変発症のリスクを管理することは,病的近視による失明防止にとって重要であり,現状の診断基準もまた不十分と考えられる.以上を踏まえたうえで,本稿では今日まで議論されている,病的近視の診断に関する最新の知見をまとめる.*TaeYokoi&*KyokoOhno-Matsui:東京医科歯科大学大学院医歯学総合研究科眼科学分野〔別刷請求先〕横井多恵:〒113-8519東京都文京区湯島1-5-45東京医科歯科大学大学院医歯学総合研究科眼科学分野0910-1810/17/\100/頁/JCOPY(25)1363I病的近視の定義1.病的近視の二つの病期病的近視の病期には,・病的近視に特徴的な眼合併症が生じ,すでに視覚障害に至った状態,・病的近視に特徴的な眼合併症はないが,将来,病的近視よる眼合併症から視覚障害に至るリスクがある状態,の二つの病期がある2,5).強度の近視は,病的近視に特徴的な視覚障害をきたす眼合併症の要因であり,病的近視における眼合併症の代表的な所見には,後部ぶどう腫の形成やさまざまな種類の近視性黄斑症がある.META-PMスタディは,病的近視を「びまん性萎縮以上の萎縮性変化を眼底に有する,もしくは後部ぶどう腫を有する」眼であると定義したが4),本来は・・の病期にある病的近視を含む基準が理想と考えられる.しかし,現状ではMETA.PMスタディの定義に基づき,眼合併症の有無により病的近視の診断を行うことが妥当と考えられる.以下に後部ぶどう腫とさまざまな種類の近視性黄斑症の定義と診断についての知見をまとめる.2.後部ぶどう腫の定義と診断病的近視の病態の最大の特徴は,眼軸延長による後部ぶどう腫の形成である.これまで後部ぶどう腫は,研究報告においてさまざまに定義されてきた.たとえば,ある報告では近視性黄斑症の一部として評価され,また別の報告では,限局した眼球壁の突出が後極部に観察されない場合でも,近視性黄斑症を認める場合は後部ぶどう腫があるものとして評価されてきた.混乱をさけるため2013年にSpadeは,「周囲の眼球壁の曲率半径よりも明らかに小さい曲率半径を有する後極部眼球壁の突出」を,後部ぶどう腫を示す用語として図1のように定義した6).これによると図1bに示すような,赤道部の眼球壁の伸展によって生じた軸性近視において,後極部眼底曲率半径(r1)に変化を認めない場合は,後部ぶどう腫がない軸性近視と定義される.一方で図1cに示すように,本来の後極部眼底曲率半径(r1)以外に,より小さな曲率半径(r2)を示す眼球壁の突出を認める場合は,後部ぶどう腫がある軸性近視と定義される.また,長らく後部ぶどう腫の分類は,1977年にCurtinが世界で初めて提唱した,双眼倒像鏡を用いたCurtin分類が用いられてきた(図2)7).Curtin分類では後部ぶどう腫は,I~Vの基本タイプと,I~Vの基本タイプの複合型であるVI~Xのタイプに分類される.一方で,Curtin分類から約40年を経た近年の画像解析技術の進歩はめざましく,後部ぶどう腫の形状は新技術を用いてより詳細に評価されるようになった.Ohno-Mat.suiらは,2012年に3D-MRIを用いた病的近視眼の全眼球形状解析を行い,3D-MRIを用いた後部ぶどう腫のシンプルな形態分類を示した8).さらに2014年には,通常のパノラマ写真ではとらえられない最周辺部200°の変化を撮像できるオプトス画像と3D-MRIによる画像解析を組み合わせ,後部ぶどう腫の新しい分類方法を提唱した(図3)9).Ohno-Matsuiらは,近年の画像解析技術によって詳細に観察されるようになったさまざまな形態の後部ぶどう腫をより適切に分類するために,Curtin分類を以下のように修正した.まず後部ぶどう腫を後部ぶどう腫の最外周縁の範囲と位置のみで大まかに分類した.このためCurtin分類において,後部ぶどう腫内での強膜形状の違いで後部ぶどう腫を細分したVI~Xの複合型後部ぶどう腫は,Ohno-Matsuiらの分類においては,すべてCurtin分類I型に含まれる.Ohno-Matsuiらの分類では,Curtin分類のI型が黄斑広域型,II型が黄斑限局型,III型が乳頭周囲型,IV型が鼻側型,V型が下方型,それ以外がその他に分類される.さらに2017年にOhno-Matsuiらは,日常診療でより簡便かつ詳細に後部ぶどう腫の形状解析ができる最大撮影幅16×14mm,深さ5mmの範囲が撮像可能なswept-sourceOCT(SS-OCT)であるプロトタイプ広角OCTを,3D-MRIに変わる手法として,世界で初めて使用し,広角OCTの病的近視診療における有用性を報告した10).広角OCTは簡便に,3D-MRIと同等もしくはそれ以上の精度で後部ぶどう腫の形状を三次元的に解析可能であり(図4),3D-MRIでは見逃される後部ぶどう腫の診断も可能であった(図5).3.近視性黄斑症の定義と診断2014年にOhno-Matsuiらによって報告されたオプト1364あたらしい眼科Vol.34,No.10,2017(26)図1Spadeらによる後部ぶどう腫の診断a:正常の眼球形態.b:赤道部眼球壁が伸展した後部ぶどう腫のない軸性近視.c:後部ぶどう腫のある軸性近視.周囲の眼球壁の曲率半径(r1)よりも小さい曲率半径(r2)を有する後極部眼球壁の突出が後部ぶどう腫である.(文献6より引用)タイプ・タイプ・タイプ・タイプ・タイプ・図2Curtinによる後部ぶどう腫の分類Curtin分類では後部ぶどう腫は,I~Vの基本タイプと,I~Vの基本タイプの複合型であるVI~Xのタイプに分類される.(文献7より引用)タイプ・タイプ・タイプ・タイプ・タイプ・黄斑広域型黄斑限局型乳頭周囲型鼻側型下方型その他図3Ohno.Matsuiらによる後部ぶどう腫の新分類後部ぶどう腫を後部ぶどう腫の最外周縁の範囲と位置で再分類し,理解しやすい名称に変更した.Curtin分類において,VI~Xの複合型後部ぶどう腫はすべて黄斑広域型に分類される.(文献9より引用)図4近視性黄斑症の眼底病変a:びまん性萎縮.b:限局性萎縮.c:Lacquercracksと単純型黄斑部出血.Cd:近視性脈絡膜新性血管退縮後のCFuchs斑と近視性脈絡膜新性血管関連黄斑萎縮.図53D.MRIで黄斑広域型と診断されたが,広角OCTでは黄斑限局型と乳頭周囲型の複合型と診断された症例a:オプトス画像.b:3D-MRIの下方画像.Cc:3D-MRIの後方画像.Cd:水平断の広角OCT.Ce:垂直断の広角OCT.Cf:三次元広角COCTの前方画像.Cg:三次元広角COCTの耳側画像.Ch:三次元広角COCTの下方画像.表1META.PMstudyで提唱された近視性黄斑症の分類と定義カテゴリーC0変化なしカテゴリーC1豹紋状眼底変化のみ中心窩およびアーケード血管内に明瞭な脈絡膜血管が観察できるカテゴリーC2びまん性網脈絡膜萎縮後極部が黄白色調を呈する網脈絡膜萎縮(範囲はさまざま)カテゴリーC3限局性網脈絡膜萎縮境界明瞭な黄色斑状の萎縮巣として発生する網脈絡膜萎縮(C1~数個の脈絡膜小葉大とサイズはさまざま)カテゴリーC4黄斑萎縮退縮した線維血管膜の周囲に経過とともに拡大する境界明瞭な円形の灰白色もしくは白色の網脈絡膜萎縮病変+LcCLacquercracks眼底後極部の黄色線状病変+CNV脈絡膜新生血管活動期脈絡膜新生血管(CNV)は滲出および出血性変化を伴う+FsFuchs斑Fuchs斑とよばれる色素沈着を伴った近視性CCNVの瘢痕病巣C─後部ぶどう腫周囲の眼球壁の曲率半径よりも明らかに小さい曲率半径を有する後極部眼球壁の局所的な突出META-PMstudy:theMeta-AnalysisforPathologicMyopiastudyC図63D.MRIで後部ぶどう腫なしと診断されたが,広角OCTでは黄斑限局型と診断された症例a:オプトス画像.b:3D-MRIの鼻側画像.Cc:3D-MRIの下方画像.Cd:水平断の広角OCT.Ce:垂直断の広角OCT.Cf:三次元広角COCTの前方画像.Cg:三次元広角COCTの前方画像をやや傾斜させた画像.3D-MRIの下方画像で,乳頭耳側のCridgeが観察されるが明らかなぶどう腫は認めない.図7病的近視眼における学童期の乳頭周囲の脈絡膜のOCT視神経乳頭耳側の脈絡膜厚は著明かつ急峻に菲薄化している.-

近視の遺伝因子

2017年10月31日 火曜日

近視の遺伝因子GeneticFactorsofMyopia目黒明*水木信久*はじめに近視は複数の遺伝因子と環境因子が複合的に関与して発症する多因子遺伝性疾患と考えられている.単一遺伝子疾患は一つの遺伝子における変異が原因で発症するのに対し,多因子遺伝性疾患では,遺伝因子は疾患に対する「かかりやすさ(感受性)」を規定しているだけであり,複数の遺伝因子(疾患感受性遺伝子)の関与のもとに,環境因子が合わさって疾患の発症に至ると考えられている.近視を対象とした遺伝子解析は以前から盛んに実施されている.当初の遺伝子解析は家系を対象とした連鎖解析(linkageanalysis)や候補遺伝子を対象とした関連解析が主であったが,近年ではゲノム全域を対象とした遺伝子解析(ゲノムワイド関連解析,genome-wideasso-ciationstudy:GWAS)が精力的に実施され,近視の疾患感受性遺伝子が次々と報告されている.本稿では,最新の知見を交えて,近視の遺伝因子について概説する.I近視の遺伝率遺伝率(heritability)は,疾患の表現型が遺伝因子にどの程度影響を受けるかを示す尺度である.近視を対象とした遺伝率の評価は以前より多く実施されている1).双生児間および同胞間を対象とした研究では,一部の研究を除き,多くの研究において近視の高い遺伝率(0.58.0.98)を報告しており,近視の発症には遺伝因子が強く関与することが示唆される.一方,親子間を対象とした研究では,双生児間および同胞間に比べて近視の遺伝率が低値(0.10.0.49)を示しており,世代間の生活環境の違いが遺伝率に影響を与えていることが推察され,近視の発症には環境因子も重要であることが示唆されている.II近視の罹患同胞相対危険率罹患同胞相対危険率(ls)とは,特定の疾患の患者の同胞における疾患の罹患率と一般集団における疾患の罹患率の比であり,疾患の発症に対する遺伝因子の寄与度を測る指標の一つとして用いられる.表1にこれまでに報告されている近視のlsを示す.Guggenheimら2)は,1968年および1996年に実施された近視の疫学研究3,4)から強度近視(-6.00D以上)および弱度近視のlsをそれぞれ20および1.5と算出している.また,Farbroth.erら5)は,9.1歳までに眼鏡を装用することを強度近視の診断基準として代用したとき,強度近視のlsが4.9となることを報告している.さらに,Peetら6)は,近視の程度に応じてlsが上昇する傾向を報告している.このように近視の程度が強くなるほどlsの値が大きくなることは,遺伝因子が近視の発症において非常に重要な役割を担っていることを示している.*AkiraMeguro&*NobuhisaMizuki:横浜市立大学医学部眼科学教室〔別刷請求先〕目黒明:〒横浜市金沢区福浦3-9横浜市立大学医学部眼科学教室0910-1810/17/\100/頁/JCOPY(17)1355表1近視の罹患同胞相対危険率(ls)表2近視の候補遺伝子領域(MYPローカス)強度近視:-6.00D以上C20C2弱度近視C1.5強度近視:9.1歳までに眼鏡装用C4.9C5近視(平均C64.2歳):C-0.50D以下C2.36C6C-1.00D以下C2.59C-1.50D以下C3.27C-2.00D以下C5.61C-2.50D以下C4.52MYP1CMYP2CMYP3CMYP5CMYP6CMYP7CMYP8CMYP9CMYP10CMYP11CMYP12CMYP13CMYP14CMYP15CMYP16CMYP17/MYP4CMYP18CMYP19CMYP20*CMYP21CMYP22CMYP23CMYP24CMYP25CXq28C18p11.31C12q21-q23C17q21-q22C22q12C11p13C3q26C4q12C8p23C4q22-q27C2q37.1CXq23-q27.2C1p36C10q21.1C5p15.33-p15.2C7p15C14q22.1-q24.2C5p15.1-p13.3C13q12.12C1p22.2C4q35.1C4p16.3C12q13.3C5q31.1C310460C160700C603221C608474CSCO2C608908C609256C609257C609258C609259C609994C609995C300613C610320C612717C612554C608367C255500C613969C614166CZNF644C614167CCCDC111C615420CLRPAP1C615431CSLC39A5C615946CP4HA2C617238*MYP20はCGWAS(ShiY,etal.AmJHumGenet(2011):表3参照)により同定された.表3近視に関するGWAS研究NakanishiHPLoSGenet(2C009)日本人C1,231人C/日本人C1,510人病的近視C1CSoloukiAMNatGenet(2C010)ヨーロッパ系人種C5,328人/ヨーロッパ系人種C10,280人屈折異常C1CHysiPGNatGenet(2C010)ヨーロッパ系人種C4,270人/ヨーロッパ系人種C13,414人屈折異常C1CLiYJOphthalmology(2C011)中国系シンガポール人C980人/日本人C3,087人強度近視C1CLiZHumMolGenet(2C011)中国人C437人C/中国人C12,962人強度近視C1CShiYAmJHumGenet(2C011)中国人C1,088人/東アジア人C8,445人強度近視C1C中国系およびマレー系シンガポール人C4,944人/日本人FanQPLoSGenet(2C012)強度近視2,731人1CMengWInvestOphthalmolVisSci(2C012)フランス人C1,251人/なし強度近視C2CKieferAKPLoSGenet(2C013)ヨーロッパ系人種C45,771人/ヨーロッパ系人種C8,323人近視C20CVerhoevenVJNatGenet(2C013)ヨーロッパ系人種C37,382人,アジア人C8,376人/なし屈折異常C24CShiYHumMolGenet(2C013)中国人C1,625人C/中国人C5,811人強度近視C2CStambolianDHumMolGenet(2C013)ヨーロッパ系人種C7,280人/ヨーロッパ系人種C19,763人屈折異常C1CChengCYAmJHumGenet(2C013)ヨーロッパ系人種C12,531人/アジア人C8,216人眼軸長C7CKhorCCHumMolGenet(2C013)東アジア人C5,030人/東アジア人C4,800人強度近視C2C日本人C3,248人C/日本人C3,460人,中国系人種C2,674人,MiyakeMNatCommun(2C015)眼軸長ヨーロッパ系人種C2,690人1*患者と健常対照者の総数.**2013年に発表された論文では複数の遺伝子領域が重複して報告されている.新規のC24個の近視感受性遺伝子が同定され,24個の遺伝子のうち,10個の遺伝子がC23andMeのCGWAS研究結果と一致していた.また,本研究では,ヨーロッパ系人種とアジア系人種の間で近視の発生率が異なるにもかかわらず,両人種間で共通の近視感受性遺伝子を多く共有していることがわかった.CREAMおよびC23andMeにより同定された遺伝子の多くはネットワークを形成しており,「MAPK」や「TGF-b/SMAD」などの細胞増殖や細胞分化に関するパスウェイが近視の発症・進行に深く関与していることが示唆されている28).Cd.「長浜スタディ」を用いたGWAS研究長浜スタディとは,滋賀県長浜市と京都大学が連携して実施した健康診断ベースの大規模疫学コホート研究であり,2015年に,京都大学を中心としたグループ(三宅ら)が長浜スタディのデータを用いたCGWAS研究を報告した29).長浜スタディに参加した日本人C3,248人を対象に,屈折・眼軸長・角膜曲率半径の近視に関連する三つの表現型についてCGWASを実行したのち,新たな日本人集団C3,460人,中国系人種集団C2,674人およびヨーロッパ系人種集団C2,690人を用いてCGWASで得られた結果の追認試験を行い,新規の近視感受性遺伝子として,染色体C22q13.31領域内のCWNT7B遺伝子を同定した.本研究では,2010年に報告された染色体C15q14領域内のCGJD2遺伝子も屈折・眼軸長と相関することを認め,アジア人集団において,WNT7B遺伝子とGJD2遺伝子の相互作用が近視化作用を増強させることを見出している.Ce.Missingheritability(失われた遺伝率)近視を対象としたCGWASが精力的に行われているが,これまでに同定されている遺伝子は近視の遺伝因子全体の一部でしかないことが推測されている.2013年に23andMeとCCREAMにより同定されたC30以上の遺伝子をすべて合わせても近視の表現型分散全体のC12%に満たないことが見積もられており30),GWASにおいて同定できなかった遺伝因子,すなわちCmissingheritabil.ityが依然として多く存在することが示唆される.したがって,近視の遺伝因子の全容を解明するうえで,missingheritabilityの解決が今後の課題である.IV近視の遺伝因子と環境因子の相互作用近視の発症・進行には遺伝因子と環境因子が複合的に関与していると考えられており,近視における遺伝因子・環境因子間の相互作用を対象とした研究が実施されている.近年では,教育水準が高いほど,遺伝因子が近視化に影響を与えることが報告されており31,32),近視の発症・進行において,教育(幼少期からC20代前半における読み書きなどの近業)が近視の遺伝因子の効果に影響を与えることが示唆される.2016年には,ゲノム全域を対象に遺伝因子・環境因子間の相互作用を検討する研究(gene-environment-wideCinteractionCstudy:GEWIS)がCCREAMにより発表された30).ヨーロッパ系人種C25集団(計C40,036人)およびアジア系人種C9集団(計C10,315人)を対象に,環境因子として「教育」を用いてCGEWISを実行した結果,ヨーロッパ系人種およびアジア系人種において「教育」と相互作用を示す遺伝子領域が複数同定され,ヨーロッパ系人種とアジア系人種間で異なる遺伝子が「教育」と相互作用を示すことが見出された.また,近視に対する「遺伝因子」C×「教育」間の相互作用がヨーロッパ系人種に比べてアジア系人種の方で強いことがわかった.CREAMは遺伝因子に対する「年齢」の影響も調査しており33),子供の時期における近視の早期発症と既知39遺伝子の関連を評価した結果,10遺伝子がC7.5歳までの早期発症(early-onset)に,11遺伝子がC7.5.15歳までの発症(later-onset)に,5遺伝子がCEarly-onsetとClater-onsetの両方に関与することが示された.また,39遺伝子全体の遺伝的効果は,7歳時およびC15歳時における近視化要因のC0.6%およびC2.3%であり,年齢の上昇とともに,遺伝的効果が上昇することが示唆された.さらに,39遺伝子のうち,5遺伝子が子供の時期の「近業」と相互作用するのに対し,「屋外活動の時間」と相互作用を示す遺伝子は認められないことが報告された.以上のことから,近視の発症・進行において,遺伝因子と環境因子間の相互作用が重要であることが考えられる.(21)Cあたらしい眼科Vol.34,No.10,2017C1359おわりに以上,近視の遺伝因子について概説した.近年の精力的な研究により,近視の発症に関与する遺伝子が次々と同定されており,近視の発症および進行メカニズムが解明されつつある.しかしながら,依然として未知な遺伝因子が多く存在していることが考えられるため,近視を対象とした遺伝学的研究調査を今後さらに発展させる必要がある.文献1)水木信久:近視の分子遺伝学.眼科47:717-752,C20052)GuggenheimJA,KirovG,HodsonSA:TheheritabilityofhighCmyopia:aCreanalysisCofCGoldschmidtC’sCdata.CJMedCGenet37:227-231,C20073)GoldschmidtCE:OnCtheCetiologyCofCmyopia.CAnCepidemio.logicalstudy.ActaOphthalmol(Copenh)Suppl98:1,C19684)SperdutoRD,HillerR,PodgorMJetal:Familialaggrega.tionCandCprevalenceCofCmyopiaCinCtheCFraminghamCO.springCEyeCStudy.CArchCOphthalmolC114:326-332,C19965)FarbrotherJE,KirovG,OwenMJetal:Familyaggrega.tionCofChighCmyopia:estimationCofCtheCsiblingCrecurrenceCriskratio.InvestOphthalmolVisSciC45:2873-2878,C20046)PeetCJA,CCotchCMF,CWojciechowskiCRCetCal:HeritabilityCandCfamilialCaggregationCofCrefractiveCerrorCinCtheCOldCOrderCAmish.CInvestCOphthalmolCVisCSciC48:4002-4006,C20077)SchwartzCM,CHaimCM,CSkarsholmCD:X-linkedCmyopia:CBornholmCeyeCdisease.CLinkageCtoCDNACmarkersConCtheCdistalpartofXq.ClinGenetC38:281-286,C19908)ShiCY,CLiCY,CZhangCDCetCal:ExomeCsequencingCidenti.esCZNF644CmutationsCinChighCmyopia.CPLoSCGenetC7:Ce1002084,C20119)ZhaoCF,CWuCJ,CXueCACetCal:ExomeCsequencingCrevealsCCCDC111CmutationCassociatedCwithChighCmyopia.CHumCGenetC132:913-921,C201310)AldahmeshCMA,CKhanCAO,CAlkurayaCHCetCal:MutationsCinLRPAP1areassociatedwithseveremyopiainhumans.AmJHumGenetC93:313-320,C201311)GuoCH,CJinCX,CZhuCTCetCal:SLC39A5CmutationsCinterferC-ingCwithCtheCBMP/TGF-bpathwayCinCnon-syndromicChighmyopia.JMedGenetC51:518-525,C201412)GuoCH,CTongCP,CLiuCYCetCal:MutationsCofCP4HA2Cencod.ingCprolylC4-hydroxylaseC2CareCassociatedCwithCnonsyn.dromichighmyopia.GenetMedC17:300-306,C201513)KleinCRJ,CZeissCC,CChewCEYCetCal:ComplementCfactorCHCpolymorphismCinCage-relatedCmacularCdegeneration.CSci.enceC308:385-389,C200514)MacArthurCJ,CBowlerCE,CCerezoCMCetCal:TheCnewCNHGRI.EBICatalogofpublishedgenome-wideassociationstudies(GWASCCatalog)C.CNucleicCAcidsCResC45:D896-D901,C201715)NakanishiCH,CYamadaCR,CGotohCNCetCal:ACgenome-wideCassociationanalysisidenti.edanovelsusceptiblelocusforpathologicalmyopiaat11q24.1.PLoSGenetC5:e1000660,C200916)SoloukiCAM,CVerhoevenCVJ,CvanCDuijnCCMCetCal:ACgenome-wideCassociationCstudyCidenti.esCaCsusceptibilityClocusCforCrefractiveCerrorsCandCmyopiaCatC15q14.CNatCGenetC42:897-901,C201017)HysiCPG,CYoungCTL,CMackeyCDACetCal:ACgenome-wideCassociationstudyformyopiaandrefractiveerroridenti.esCaCsusceptibilityClocusCatC15q25.CNatCGenetC42:902-905,C201018)HayashiCH,CYamashiroCK,CNakanishiCHCetCal:AssociationCof15q14and15q25withhighmyopiainJapanese.InvestOphthalmolVisSciC52:4853-4858,C201119)VerhoevenVJ,HysiPG,SawSMetal:Largescaleinter.nationalCreplicationCandCmeta-analysisCstudyCcon.rmsCassociationCofCtheC15q14ClocusCwithCmyopia.CTheCCREAMCconsortium.CHumGenetC131:1467-1480,C201220)JiaoCX,CWangCP,CLiCSCetCal:AssociationCofCmarkersCatCchromosomeC15q14CinCChineseCpatientsCwithCmoderateCtoChighmyopia.MolVisC18:2633-2646,C201221)KieferAK,TungJY,DoCBetal:Genome-wideanalysispointsCtoCrolesCforCextracellularCmatrixCremodeling,CtheCvisualCcycle,CandCneuronalCdevelopmentCinCmyopia.CPLoSCGenetC9:e1003299,C201322)VerhoevenVJ,HysiPG,WojciechowskiRetal:Genome-widemeta-analysesofmultiancestrycohortsidentifymul.tipleCnewCsusceptibilityClociCforCrefractiveCerrorCandCmyo.pia.NatGenetC45:314-318,C201323)QiangY,LiW,WangQetal:Associationstudyof15q14andC15q25CwithChighCmyopiaCinCtheCHanCChineseCpopula.tion.BMCGenetC15:51,C201424)ChenCT,CShanCG,CMaCJCetCal:PolymorphismCinCtheCRAS.GRF1CgeneCwithChighCmyopia:ACmeta-analysis.CMolCVisC21:1272-1280,C201525)FanQ,BarathiVA,ChengCYetal:GeneticvariantsonchromosomeC1q41Cin.uenceCocularCaxialClengthCandChighCmyopia.PLoSGenetC8:e1002753,C201226)KieferAK,TungJY,DoCBetal:Genome-wideanalysispointsCtoCrolesCforCextracellularCmatrixCremodeling,CtheCvisualCcycle,CandCneuronalCdevelopmentCinCmyopia.CPLoSCGenetC9:e1003299,C201327)VerhoevenVJ,HysiPG,WojciechowskiRetal:Genome-widemeta-analysesofmultiancestrycohortsidentifymul.tipleCnewCsusceptibilityClociCforCrefractiveCerrorCandCmyo.pia.NatGenetC45:314-318,C201328)HysiCPG,CWojciechowskiCR,CRahiCJSCetCal:Genome-wideCassociationstudiesofrefractiveerrorandmyopia,lessonslearned,andimplicationsforthefuture.InvestCOphthalmol1360あたらしい眼科Vol.34,No.10,2017(22)C

眼軸長の疫学調査

2017年10月31日 火曜日

眼軸長の疫学調査AxialLengthDistributioninMajorCohortStudies三宅正裕*中西秀雄*はじめに近視は世界的にも公衆衛生上の問題となっており,近視の疫学調査はこれまでも多数報告されている.これらのうちの多くは屈折値と,屈折値によって定義された近視の頻度に関する調査であり,ここ20年でとくにアジア地域において近視が増加していることが報告されている.強度の近視に関連した網脈絡膜萎縮が失明につながることは知られているが,近視による失明には,屈折値よりもむしろ眼球形状が関連することが指摘されている.長眼軸のような眼球形状異常は通常,近視性屈折異常を伴うため,近視性屈折異常と失明が相関しているというこれまでの知見は正しいが,屈折値は眼球形状以外にも水晶体や角膜の屈折などさまざまなパラメータの影響を受けてある程度代償されることから,屈折値が強くなくとも眼球形状に異常があることもある.逆に,たとえば核白内障の影響により屈折値が強くても眼球形状に異常がないこともある.その観点から,近視による病的状態を考えるうえでは,屈折値もさることながら,眼軸長について検討することが重要である.I成人の眼軸長これまでのおもなpopulation-basedstudyのうち,眼軸長について報告されているものを一覧にした(表1).BlueMountainEyeStudyやBeaverdamEyeStudyなど伝統的なコホートスタディも含まれるが,眼軸長について報告された年は比較的最近であることがわかる.また,現在多数の眼科コホートを擁して積極的に疫学研究を進めているシンガポールは,年齢・性別で層別化した眼軸長を2001年に報告しており(TanjongPagarSurvey),先見性の高さがうかがわれる(なお,当該論文の筆頭著者は若かりし頃のTienYinWong教授である).これまでの報告では,眼軸長は眼球生体特徴(ocularbiometry)の一つとして前房深度,水晶体厚,角膜曲率などのパラメータとセットで報告されることが一般的であるが,その先鞭をつけたのが,この報告であった.どのようなパラメータが眼軸長と同時に報告されているかを表2にまとめた.前房深度と角膜曲率(または角膜屈折力)は,ほとんどのコホートで眼軸長と同時に報告されていることがわかる.これらのパラメータは,眼軸長と同様に眼球の大きさの影響を受けやすいパラメータであることから,眼軸長と同時に報告することで眼球の特徴を表現しようとしているものと思われる.一方で,水晶体厚や硝子体腔厚は,初期の研究では同時に報告されているものの,最近の研究ではあまり報告されていない.初期の研究では水晶体の核硬化度や屈折値も合わせて報告されていることが多いことも勘案すると,研究対象としての眼軸長は,屈折異常を引き起こす要因としての位置づけから,眼球の大きさと関連するパラメータとしての位置づけに変遷していったことが推察される.また,多変量回帰のみを実施した報告を除けば,ほぼすべての報告において年齢・性別による層別化解析が*MasahiroMiyake&*HideoNakanishi:京都大学大学院医学研究科眼科学〔別刷請求先〕三宅正裕:〒606-8507京都市左京区聖護院川原町54第2臨床研究棟8階京都大学大学院医学研究科眼科学0910-1810/17/\100/頁/JCOPY(11)1349表1眼軸長について報告されているおもなPopulation.basedstudy1CTanjongPagarSurveyシンガポールC2001InvestOphthalmolVisSci42:7C3-80,2001C2CMongolianStudyモンゴルC2004InvestOphthalmolVisSci45:7C76-783,2004C3CLosAngelesLatinoEyeStudy米国C2005InvestOphthalmolVisSci46:C4450-4460,2005C4CReykjavikStudyアイスランドC2005ActaOphthalmolScand83:7C34-738,2005C5CMeiktilaEyeStudyミャンマーC2008BrJOphthalmol92:1C591-1594,2008C6CBeaverdamEyeStudy米国C2009CArchOphthalmol127(1):8C8-93,2009C7CLiwanEyeStudy中国C2009InvestOphthalmolVisSci50:C5130-5136,2009C8CEPIC-NorfolkEyeStudy欧州全域C2010BrJOphthalmol94:8C27-830,2010C9CCentralIndiaEyeandMedicalStudyインドC2010Ophthalmology117:1C360-1366,2010C10CBlueMountainsEyeStudyオーストラリアC2010Ophthalmology117:4C17-423,2010C11CSingaporeMalayEyeStudyシンガポールC2010InvestOphthalmolVisSci51:1C03-109,2010C12CSingaporeIndianEyeStudyシンガポールC2011InvestOphthalmolVisSci52:C6636-6642,2011C13CBeijingEyeStudy中国C2012PLoSOne7:eC43172,2012C14CShahroudEyeCohortStudyイランC2012BMCOphthalmology12:5C0,2012表2各コホートで眼軸長と同時に報告されている眼球生体特徴(No.1~14は表C1に対応)C1○○○C○/─C○C○C─年齢・性別C2C○C○C○C─/○C─C○眼軸長左右差年齢・性別C3○○○C─/○C○C○C─年齢・性別C視神経乳頭径・4C○C○C─C○/─C─C─面積年齢・性別身長との単変量回帰C5○○○C○/─C○C○C─年齢・性別C年齢・性別,6○──C○/─C─C─C─身長,教育歴C7○○─C─/○C─C○C─年齢・性別C年齢・性別・身長・体重・教育歴8○─C─C─/─C─C○C─年齢・性別で多変量回帰C各種眼球生体特徴,年齢,性別,9C─C─C─C─/─C─C─C──身長,体重,教育歴,収入等との単変量/多変量回帰C10C○C─C─C─/○C─C○角膜径(WTW)年齢・性別C年齢・性別,年齢・性別・身長・体重・教育11C○C─C─C○/─C─C─C─身長・体重・BMI,歴・近見作業時間・喫煙歴・糖尿教育歴,他多数病の有無で多変量回帰C眼軸長/角膜年齢・性別,12○C─C─C○/─C─C─曲率半径比水晶体硬化度C各種眼球生体特徴,年齢,性別,13C─C─C─C─/─C─C─C──身長,体重,教育歴等との単変量/多変量回帰C年齢・性別・身長・体重・教育歴14C○C○C○C─/─C─C─C─年齢,性別との単変量/多変量回帰表3年齢および性別で層別化した眼軸長分布(No.1~14は表C1に対応)CNo男性女性40~45~50~55~60~65~70~75~80~85~40~45~50~55~60~65~70~75~80~85~C1C23.80±1.20C23.54±1.19C23.37±1.13C23.38±0.85C23.40±1.37C23.01±1.16C22.73±1.03C22.66±0.75C2C23.4±1.3C23.3±0.8C23.5±1.0C23.6±0.9C23.0±1.3C23.1±1.1C23.2±1.1C23.1±1.2C3C23.7±1.0C23.6±0.8C23.6±0.9C23.5±0.9C23.7±0.9C23.2±1.1C23.2±0.9C23.1±1.0C23.1±0.9C22.9±0.9C4C23.89±1.09C23.61±0.96C23.60±1.09C23.26±0.99C23.25±1.03C23.04±0.98C5C23.17±0.79C23.14±1.11C23.06±1.00C23.00±1.01C22.57±0.85C22.51±0.74C22.54±0.88C22.52±0.79C6C24.06±1.06C23.88±1.14C23.83±1.08C23.69±1.25C23.49±1.21C23.37±1.02C7C23.37C23.41C23.31C23.65C22.83C22.87C22.79C22.98C8C23.94±1.14C23.84±1.18C23.72±1.16C23.64±1.11C23.47±1.18C23.34±1.21C23.10±1.05C23.19±1.03C910*C23.88±0.09C23.68±0.05C23.81±0.08C23.63±0.28C23.37±0.12C23.25±0.06C23.08±0.06C23.03±0.1511*C23.88±0.05C23.83±0.05C23.69±0.06C23.58±0.05C23.66±0.06C23.36±0.05C23.12±0.05C23.36±0.03C12C23.71±1.01C23.72±1.07C23.68±1.19C23.36±0.70C23.36±1.12C23.28±1.18C22.99±0.96C23.09±1.2513†C23.25±1.1414†C23.24C23.16C23.16C23.16C23.04眼軸長の単位はmm,平均C±標準偏差で表記.*については平均±標準誤差で表記†については男女合わせた値を男性欄に表記.眼球全体の拡大眼球の縦方向の拡大図1眼軸長伸長がみられる場合の2つのパターン新生児C1,163人のうち,生後C5~17日にCMRIを撮像し,T2強調画像が良好に描出できた正期産児C173人を対象とし,出生児のC3D眼球形状や眼軸長とC3年後の屈折・眼軸長との相関を調べた1).新生児の眼軸長は右眼C17.06±0.78Cmm,左眼C17.48C±0.87Cmmで,3年後には右眼C21.73C±0.69mm,左眼C21.74C±0.68mmになったと報告されている.また,もともと眼軸長が長い,眼球が大きい,眼球形状が長軸方向に楕円形といった眼球ほど,3年間での眼軸長伸長が有意に少ないことが報告されている.3年間での眼軸伸長はC4.47C±0.97Cmmで,3年後の等価球面度数はC0.91C±0.80Dだったという.C2.3.6歳の眼軸長に関する研究2012年に中国の八つの幼稚園を対象に実施された横断研究CShenzhenKindergartenEyeStudy2)では,対象となったC3~6歳の幼稚園児C1,764人のうち,71.1%であるC1,133人が同意し,調節麻痺下屈折検査が施行できたC1,127人が研究に参加した.平均眼軸長は,3歳児C22.19C±0.65Cmm,4歳児C22.27C±0.68Cmm,5歳児C22.51C±0.68Cmm,6歳児C22.63C±0.63mmであったが,角膜曲率半径の平均値はC3~6歳児に統計学的な有意差はみられなかった.前房深度はC3歳児のC3.26C±0.25mmからC6歳児のC3.37C±0.24mmまで年齢が上がるごとに増加し,同様に,等価球面度数はC3歳児のC1.49C±0.64DからC6歳児のC1.23C±0.85Dまで,年齢が上がるごとに減少した.C3.6.12歳の眼軸長に関する研究CorrectionofMyopiaEvaluationTrial(COMET)は,四つのセンターの合計C469人の近視(C-1.25D~C-4.5D)の小児をリクルートして単焦点眼鏡と累進焦点眼鏡の近視抑制効果を比較した前向きランダム化比較試験である3).当該コホートではベースラインからC14年間の追跡がなされており,本論文ではそのデータが報告されている.ベースラインでは平均C9.3C±1.3歳で眼軸長C24.14C±0.72Cmm(等価球面度数C-2.38±0.81D)であったものが,平均C24.1C±1.3歳時点でC25.4C±1.01Cmm(等価球面度数-5.17±2.02D)となっている.4.6.14歳の眼軸長に関する研究CollaborativeCLongitudinalCEvaluationCofCEthnicityandCRefractiveCError(CLEERE)Study4)は,小児の近視発症に影響を与える因子を解明するために,OrindaLongitudinalStudyofMyopia(OLSM)の拡張として新たにリクルート施設を増やして行われた研究である.1995年からC2003年の間に,6~14歳の子供C4,292人が登録され,フォローされた.このうち,フォロー期間中に遠視から近視に変わったC605人(近視化群)と,期間中ずっと正視であったC374人(正視群)が本論文の解析対象となっている.これによると,いずれの群も初期の眼軸長はC22.7Cmm程度であったところ,正視群では年間C0.10Cmm程度のほぼ一律の眼軸長伸長であったのに対して,近視化群ではC0.23Cmm程度の眼軸長伸長を認めていた.C5.11.15歳の眼軸長に関する研究SydneyMyopiaStudy5)では,ランダムに選ばれたシドニーのC21の中学校で調査を行い,75.3%にあたる2,353人をリクルートした研究である.年齢幅はC11.1~14.4歳(平均C12.7歳)で,平均眼軸長は全体でC23.38C±0.85Cmmであった.また,人種別にみた場合,白人系はC23.23±0.75Cmm,東アジア系はC23.86C±1.07Cmm,南アジア系はC23.65C±0.94mm,中東系はC23.39C±0.70と,白人に比してその他の人種は眼軸長が有意に長かった.体格については記載がないが,白人のC4.6%に対してアジア人ではC30%以上に近視がみられており,これが眼軸長の長さと関係していると考えられる.おわりに眼軸長について種々の報告をまとめた.単なる眼軸長の数値だけでは眼球そのものが大きいのかそれとも近視が強いのかを判別することはできず,十分でない.とくに人種を越えての議論をするのであれば,眼軸長のみならず,他の眼球生体特徴とのバランスを適切に評価することが重要であろう.手法としては,身長で補正するという方法もあれば,近年は眼軸長/角膜曲率半径比というパラメータも用いられている.いずれにせよ異常長眼軸眼は異常屈折眼よりも失明に至る近視性黄斑症を有す(15)Cあたらしい眼科Vol.34,No.10,2017C1353-

近視研究の方向性

2017年10月31日 火曜日

近視研究の方向性StrategyforMyopiaResearch不二門尚*はじめに近視は日本を含む東南アジア人に発症頻度が高く,進行すると視機能障害が生じ,わが国では失明原因の5番目に位置している1).早期発症の強度近視には,遺伝的な要因が働く可能性があるが,網膜.離の頻度は近視度数に応じて増加するという報告2),緑内障による視野障害も近視度数に応じて頻度が増加するという報告3)があり,成長期の近視の進行を抑制することは,将来的な視機能障害を減少させるうえで重要と考えられる.近視化の機構に関しては,実験近視の研究から網膜像のボケがトリガーになり,網膜内情報伝達系が修飾され,脈絡膜を介して強膜のリモデリングが起きるという流れはコンセンサスが得られているが,細かい分子メカニズムは十分には明らかになっていない.また,臨床研究では,累進コンタクトレンズやオルソケラトロジーの近視進行抑制の有用性が示されているが,その機構は十分には解明されていない.本稿では,近視研究の方向性として,近視化の機構について動物実験で解明されたこと,今後の課題に触れた後,累進コンタクトレンズの臨床研究で示された結果などについて考察を加える.I近視化の機構:実験近視の研究でわかったこと近視には環境要因が大きいことは,過去20年の間に全世界的に近視の頻度が増加していることからも推察される(遺伝的には20年でそれほど大きな変化は起きないと考えられる)4).環境要因に関しては,視環境をコントロールできる近視の動物モデル(ヒヨコ,サル,マウスなど)で研究が進んでいる.1.網膜像のボケと近視化成長期のヒヨコに凹レンズを付加して飼育すると,付加した度数に応じて近視化することから,網膜より後ろに焦点を結ぶような網膜像のボケ(遠視性のボケ)が近視化を進める要因になると考えられている(図1).近視眼では必要とされる調節より実際の調節量が少ないので,軸上に遠視性のボケが生じることにより近視化が促進するという仮説が,調節ラグ理論である5).遠視性のボケは軸上だけでなく,周辺部網膜においても近視化を促進することが示され,近年では軸外収差理論として注目されている6)(図2).また,半透明のゴーグルを負荷し,網膜像をぼかした場合でも近視化することが示されている(図3).2.網膜像のボケと網膜内情報伝達系網膜像の遠視性のボケ(網膜より後方に焦点を結ぶボケ)が網膜内でどのように検知されるかについて,十分な結論は出ていない.短波長光と長波長光では焦点を結ぶ位置が異なるので,色収差は遠視性のボケと近視性のボケの差を検知する手がかりになり得る.しかしながら,長波長光の近視化への影響がヒヨコとサルで異なる*TakashiFujikado:大阪大学大学院医学系研究科医用工学講座感覚機能形成学〔別刷請求先〕不二門尚:〒565-0871大阪府吹田市山田丘2-2大阪大学大学院医学系研究科医用工学講座感覚機能形成学0910-1810/17/\100/頁/JCOPY(3)1341ab対照.16D負荷図1実験近視a:ヒヨコに凹レンズを付加した図.b:-16Dの凹レンズを負荷した眼(右)は,対照眼(左)と比較して眼軸長が長いことがわかる.c:近視進行のメカニズムのシェーマ.凹レンズ負荷により,網膜より後ろに焦点を結ぶことで網膜像に遠視性のボケが生じる.この遠視性のボケをトリガーにして眼軸長が伸びる.図3局所網膜のボケによる眼軸延長a:側方視野を半透明のゴーグルで遮閉.Cb:Aのシェーマ.Cc:遮閉部位に一致した網膜部位の眼軸が伸長する.停止性夜盲ON型双極細胞の障害DAアマクリン細胞への入力の低下実験近視低コントラスト刺激DAアマクリン細胞への入力低下屋外活動DAアマクリン細胞の賦活化Sclera図4網膜内情報伝達系と近視化停止性夜盲および実験近視における近視化には,ドーパミン(DA)含有アマクリン細胞への入力低下が,屋外活動による近視化抑制には,DA含有アマクリン細胞の賦活化が関係するという仮説が提唱されている.ONCCBC:ON型錐体双極細胞,ONCRBC:ON型杆体双極細胞,DACAC:ドーパミン含有アマクリン細胞,GlucCAC:グルカゴン含有アマクリン細胞,AIIAC:AIIアマクリン細胞.等価球面値(D)a.早期発症型b.通常型c.後期発症型10.1.2.3.4.5.6.7.8.9.100246810121416182022242468101214161820222424681012141618202224年齢(年)図5近視進行の3タイプa:早期発症型.小学校入学前に発症する早期発症型は強度近視に到る可能性が高い.発症を遅らせることができれば最終的な近視度数は軽減する.Cb:通常型.正視化現象が収束するC8歳ごろ発症し,18歳頃まで進行する.進行速度を抑制する介入ができれば,最終的な近視度数は軽減する.Cc:後期発症型.中学校高学年移行に発症するタイプ.(文献C11を改変)a.眼軸長b.屈折値Changeinaverageaxiallength(mm)0.350.300.250.200.150.100.050.00.0.05NewCLsControlCLsP=0.011,repeated-measuresANOVAP=0.03960.1700P=0.01360.03‡00.060.03P=0.01610.11‡0.04‡0.09136912図6低加入度累進コンタクトレンズによる近視抑制a:眼軸長の延長(装用後C1カ月を起点としてC11カ月間のフォロー).低加入度群(◇)では単焦点群(□)と比較して有意(47%)に眼軸長が抑制された.Cb:屈折度の近視化(装用後C1カ月を起点としてC11カ月間のフォロー).屈折度は,有意差はなかったが,低加入度群(◇)では単焦点群(□)と比較して近視化が抑制される傾向がみられた.CbTemporalEccentricityNasal図7軸外収差の測定a:低加入度群(◇)では単焦点群(□)と比較して軸外の相対的屈折度(等価球面値)に有意差はなかった.Cb:軸外収差の測定法.固視標を注視させ,視線をずらした状態で屈折値を測定する.a.低加入度累進SCL装用時b.単焦点SCL装用時調節L調節R11Accommodation[D]/Vergence[MA]0.1.2.3.4Accommodation[D]/Vergence[MA]0.1.2.3.4.501,0002,0003,0004,000.501,0002,0003,0004,000TIME[msec]TIME[msec]図89歳,男児(正視)SCL装用時の調節応答両眼波面センサーを用いてCSCLを装用したときの調節応答(近方視時:50Ccm)を測定した.低加入度累進SCL装用時(Ca)のほうが,単焦点CSCL装用時(Cb)より近見時の調節の変動が少ない傾向がみられた.れた.低加入度累進CSCLを小児に長期装用することで得られる近視進行抑制効果の光学的機序には,調節の影響がかかわっており,調節反応量が小さい分だけ眼にかかる機械的緊張が緩和され,長期的な作用として眼軸長の伸張が抑制されることが推察された.CVまとめ近視進行の抑制は,まだ研究段階で確立したガイドラインはない.しかしながら,屋外活動の増加などの環境要因の改善,低濃度CAT点眼などの薬理学的方法,遠視性のボケを改善するなどの光学的な方法が,可能性の高い介入法として注目されている.低加入度のCSCLでも近視進行抑制が可能であるのは,調節ラグ理論や軸外収差理論では説明できず,調節軽減の機構が働いている可能性が示された.実験近視の研究では,近視化の機構に調節の関与は否定されているので,臨床研究での結果を説明する機構について,今後の研究が期待される.CLは眼鏡と比較して,眼球運動の影響を受けないため,網膜像を理論通りにコントロールしやすい利点がある反面,感染症などのリスクに関して少ないとはいえ気をつける必要がある.(9)文献1)中江公裕,増田寛治郎,石橋達郎:日本人の視覚障害の原因.15年前との比較.医学のあゆみ225:691-693,C20082)OgawaCA,CTanakaCM:TheCrelationshipCbetweenCrefrac.tiveerrorsandretinaldetachment–analysisof1,166reti.nalCdetachmentCcases.CJpnCJCOphthalmolC32:310-315,C19883)QiuCM,CWangCSY,CSinghCKCetCal:AssociationCbetweenCmyopiaCandCglaucomaCinCtheCUnitedCStatesCpopulation.CInvestOphthalmolCVisSciC54:830-835,C20134)VitaleCS,CSperdutoCRD,CFerrisCFLC3rd:IncreasedCpreva.lenceCofCmyopiaCinCtheCUnitedCStatesCbetweenC1971-1972CandC1999-2004.CArchOphthalmol127:1632-1639,C20095)GwiazdaJ,ThronF,BauerJetal:Myopicchildrenshowinsu.cientaccommodativeresonsetoblur.InvestOphthal.molVisScC34:690-694,C19936)SmithCELC3rd,CHungCLF,CHuangCJ:RelativeCperipheralChyperopicdefocusalterscentralrefractivedevelopmentininfantmonkeys.VisionResC49:2386-2392,C20097)MorganCIG,CRoseCKA,CAshbyCRS:AnimalCmodelsCofexperimentalCmyopia:limitationsCandCsynergiesCwithCstudiesConChumanCmyopia,CInCPathologicCMyopia,CSpaideCRF,COhno-MatsuiCK,CYanuzziCLACEds.Cp39-58,CSpringer,NewYork;20148)WildsoetCC:NeuralCpathwaysCsubservingCnegativeClens-inducedCemmetropizationCinCchicks–insightsCfromCselec.tivelesionsoftheopticnerveandciliarynerve.CCurrEyeReC27:371-385,C2003あたらしい眼科Vol.34,No.10,2017C1347—

序説:近視に関する最新の話題

2017年10月31日 火曜日

近視に関する最新の話題LatestTopicsonMyopia稗田牧*平岡孝浩**近視を減らすことは失明者を減らすことである.日本は近視大国で,近視の有病率は成人の60%を超えるが,これは世界平均の倍である.とはいえ全世界でも近視が増加しており,2050年には全世界の近視有病率は60%を超し1),世界が日本並みになるといわれている.近視が増えると網膜.離や緑内障の有病率が増加することはよく知られている.また,強度の近視になると,近視性網脈絡膜萎縮,近視性視神経症,高度近視性内斜視などさまざまな眼疾患を合併してくる.したがって近視人口が増加すると,近視に付随したさまざまな眼疾患も増加し,その結果として失明者は増加する.人間は生下時に遠視であり,6歳(小学校入学時点)でほぼ正視となり,学童期に近視が進行する.近視関連眼疾患の多くが強度近視から発生するのであれば,学童期に近視の進行を抑制することができれば強度近視の発生を減らすことになり,近視関連眼疾患の発症を減らすことになる.まずは,近視の進行を抑制するべきである.オルソケラトロジーや戸外活動の奨励はある程度エビデンスのある治療であり,0.01%アトロピンや多焦点コンタクトレンズはそれに次ぐ有望な治療と見込まれている.エビデンスを積み重ねることで,適切な時期に適切な治療を行えるだけの知見を増やすことが急務である.今,わが国における近視に関する研究は第二次近視ブームといわれるほどの広がりをみせ,ほぼ同時期に近視研究会,日本近視学会が発足した.実験近視,遺伝子診断,疫学調査など基礎的な研究から,コンタクトレンズやレーシックなど屈折矯正治療,さらに黄斑症,視神経症,斜視への対応まで,従来のサブスペシャリティーの枠を越えた「近視」という研究分野の復活である.このブームの結果として,近視による失明を少しでも減らさなくてはならない.強度近視を減らすのにもっとも有効な方法は,ほぼ正視の小学校入学から半数以上が近視になる高校生までの間に,徹底的な介入を行うことである.学童期に積極的な介入を行うには,近視の実態を把握し,学童近視から近視による失明への過程を明らかにして,近視進行予防の社会的なコンセンサスを得る必要がある.その結果として「近視」が病気であり,進行予防を含む「屈折矯正」が医療であることがより明確になるだろう.文献1)HoldenBA,FrickeTR,WilsonDAetal:Globalpreva.lenceofmyopiaandhighmyopiaandtemporaltrendsfrom2000through2050.Ophthalmology123:1036-1042,2016*OsamuHieda:京都府立医科大学大学院医学研究科視覚機能再生外科学**TakahiroHiraoka:筑波大学医学医療系眼科0910-1810/17/\100/頁/JCOPY(1)1339

片眼の下転障害を初発とし,全眼球運動障害に至ったMiller Fisher症候群の1例

2017年9月30日 土曜日

《原著》あたらしい眼科34(9):1330.1333,2017c片眼の下転障害を初発とし,全眼球運動障害に至ったMillerFisher症候群の1例山本美紗古川真二郎平森由佳寺田佳子原和之地方独立行政法人広島市立病院機構広島市立広島市民病院眼科CACaseofMillerFisherSyndromewithTotalOphthalmoplegiainBothEyesDevelopedafterOnsetofUnilateralInfraductionDe.ciencyMisaYamamoto,ShinjiroFurukawa,YukaHiramori,YoshikoTeradaandKazuyukiHaraCDepartmentofOphthalmology,HiroshimaCityHiroshimaCitizensHospital目的:今回筆者らは左下直筋障害で発症し,全眼球運動障害へ進行したCMillerFisher症候群のC1例を経験したので報告する.症例:31歳,女性.前日からの複視の精査加療目的で当科を受診.初診時,主訴は下方視時の複視であった.眼球運動検査で左眼下転障害を認めた.自覚的に左眼下直筋の作用方向で複像間距離が最大であった.全身の神経学的検査では異常は認められなかった.頭部磁気共鳴画像検査で左上顎洞炎の所見を認め,複視の原因として炎症の波及が疑われた.4日後,歩行障害,全眼球運動障害が出現した.これらの所見と抗体測定により,MillerFisher症候群と診断された.CPurpose:WereportacaseofMillerFishersyndromewithtotalophthalmoplegiainbotheyesaftertheonsetofleftinferiorrectusmusclepalsy.Case:A31-year-oldfemalewithacuteonsetdiplopiaatdownwardgazefromthepreviousdaywasreferredtous.Eyeexaminationrevealedinfraductiondefectinthelefteye.VerticaldiplopiaappearedCwithCtheCdownwardCgazeConlyCandCincreasedCwithClowerCleftward.CGeneralCneurologicalCexaminationCdidCnotshowanyabnormalities.Leftmaxillarysinusitiswasdetectedwithmagneticresonanceimaging,thein.amma-tionwasconsideredtobeacauseofherverticaldiplopia.After4days,shedevelopedataxiaofgaitandtotaloph-thalmoplegia.CBasedConCtheCaboveC.ndingsCandCidenti.cationCofCantibodiesCinCserum,CMillerCFisherCsyndromeCwasCdiagnosed.〔AtarashiiGanka(JournaloftheEye)34(9):1330.1333,C2017〕Keywords:MillerFisher症候群,副鼻腔炎,全眼球運動障害,先行感染.MillerFishersyndrome,sinusitis,totalophthalmoplegia,priorinfection.Cはじめに眼球運動は虚血,頭蓋内病変,炎症などさまざまな疾患により障害される1).悪性腫瘍や動脈瘤による報告もあり1),眼球運動障害の原因を早期に特定することは臨床上重要である.眼球運動障害を伴い,重症化すれば全身的に異常をきたす疾患としてCMillerCFisher症候群(MillerCFisherCsyn-drome:MFS)がある.MFSは,1956年にCMillerCFisherによって報告された急性に発症する外眼筋麻痺,運動失調,深部腱反射の低下をC3徴とする疾患である2).眼球運動所見は両眼の全眼球運動障害を呈することが知られている.MFSの約C9割に先行感染の既往が認められており,眼球運動障害をきたす患者に対して,先行感染の既往を聴取することはCMFSの鑑別において重要であると報告されている3,4).今回筆者らは,左下直筋障害で発症し,全眼球運動障害へ進行したCMFSのC1例を経験し,初診時の問診によるCMFSの鑑別が重要であると考えられたため,報告する.CI症例31歳,女性.左上顎歯痛により,歯科を受診したところ左副鼻腔炎を指摘され,翌日耳鼻咽喉科を受診.左急性副鼻〔別刷請求先〕山本美紗:〒730-8518広島市中区基町C7-33地方独立行政法人広島市立病院機構広島市立広島市民病院眼科Reprintrequests:MisaYamamoto,M.D.,DepartmentofOphthalmology,HiroshimaCityHiroshimaCitizensHospital,7-33Motomachi,Nakaku,Hiroshima730-8518,JAPAN1330(118)腔炎と診断され,抗菌薬内服による治療を開始された.しかし,同日夕方から発熱,頭痛,複視が出現し,翌日再度耳鼻咽喉科を受診.副鼻腔炎の増悪が疑われ精査加療目的で,2016年C3月下旬当院耳鼻咽喉科を紹介で初診.さらに同日,複視の精査目的のため当科を紹介で初診.当科初診時所見:主訴は前日からの下方視時の複視であった.視力は両眼とも矯正で(1.0).眼位は交代遮閉試験で軽度の外斜位.眼球運動検査で左眼下転障害を認めた.眼瞼下垂は認められなかった.Hess赤緑試験で左眼の下転,上転障害が認められた(図1上).しかし,自覚的には左眼下直筋の作用方向で複像間距離が最大であり,正面視と上方視で複視の訴えはなかった.両眼単一視野検査では,下方注視のみで複視が認められた(図1下).瞳孔は正円同大で,対光反射も直接反応,間接反応ともに迅速であった.前眼部,中間透光体,眼底に異常は認められなかった.副鼻腔CcomputedCtomography(CT)では,左上顎洞に陰影所見が認められた(図2a).採血検査で,CRP値はC0.212と高値を示した.複視の原因としては上顎洞炎の所見は軽度であると考え,全身的な精査も含めて神経内科に精査を依頼した.全身の神経学的な検査では異常を認めなかった.頭部magneticCresonanceCimaging(MRI)で,両側の上顎洞と視図1初診時のHess赤緑試験と両眼単一視野上:Hess赤緑試験.左眼下転,上転障害が認められた.下:両眼単一視野.下方注視時のみ複視が認められた.C神経が高輝度に描出された(図2b).年齢と性別を考慮し視神経炎および多発性硬化症も疑われた.しかし,矯正視力は良好で視力低下の訴えはなく,視神経乳頭および瞳孔所見は正常であった.さらにCMRI上,頭部に異常は認められず全身に神経学的な異常を認めなかったことから多発性硬化症は否定された.複視の原因として上顎洞と視神経の高輝度所見は左側に優位に認められており,上顎洞の炎症が眼窩内に波及したと考えた.眼窩内への炎症の波及以外に複視の原因と考えられる異常所見を認めず,左眼窩下直筋近傍への上顎洞炎の波及と診断され経過観察となった.経過:2日後より症状が悪化し前回受診時よりC4日後,耳鼻科を再診.歩行障害,力が入りにくいなどの神経学的異常が認められたため,神経内科,眼科へ再び精査目的で受診.再診時の眼球運動検査では,左眼瞼下垂および,両眼の全眼球運動障害が認められた(図3).両側性の外眼筋麻痺と歩行障害の所見からCMFSを疑い,再度詳細に問診を行ったところ,10日前に発熱の既往があった.抗体検査では抗CGQ1b図2CT,MRI所見a:CT.左上顎洞に陰影所見が認められた.Cb:MRI.両側の上顎洞と視神経が高輝度に描出された.図3再診時の9方向眼球運動写真両眼ともに全眼球運動が認められた.抗体陽性でありCMFSの診断が確定した.入院加療が行われ,免疫グロブリン大量静注法がC5日間施行された.加療C4日目より症状の改善を認め,約C1カ月後の再診時には眼球運動障害,歩行障害ともに消失していた.CII考按眼球運動はさまざまな疾患により障害され,なかには悪性腫瘍や動脈瘤など生命予後にかかわる重症例の報告もあり,眼球運動障害の原因を早期に特定することは臨床上重要である1).今回筆者らは,片眼の左眼下直筋障害で発症し,全眼球運動障害に進行したCMFSを経験した.初診時には症状が軽度であったため,複数の診療科を受診しさまざまな検査が行われたが診断に至らなかった.MFSについてC3徴が揃わない不完全例が多く報告されている.全眼球運動障害または両側性外転神経麻痺を示したMFSについての報告では3,4),発症直後の眼球運動所見が不明である.MFSは臨床症状のピークに向かうにつれて全身状態が悪化することから眼球運動障害も同様の経過を辿ると考えられる.本症例は,左下直筋の単筋障害で発症し,全身症状の増悪とともに全眼球運動障害へと進行した.これは過去に両側性眼球運動障害と報告された症例においても,片眼性あるいは単筋の眼球運動障害であった可能性を示唆する.歩行障害や全外眼筋麻痺などの所見を示していればCMFSの診断は容易であると考えられる.しかし,患者はCMFSの診断が行われるまでに複数の医療機関を受診するとの報告があり4),MFSは本症例のように発症初期には典型的な両眼性眼球運動障害を示さない可能性があると考えられた.よって急性発症の眼球運動障害を呈する症例においては,片眼性で単筋の障害であったとしてもCMFSの可能性を念頭に置く必要があると考える.MFSのC3徴以外の特徴として先行感染の存在,眼瞼下垂,顔面神経麻痺,瞳孔障害,眼球運動痛,四肢のしびれ,異常感覚が報告されている3,4).なかでも先行感染は約C9割に認められることが報告されている.感染症状から神経症状発現までの期間は同日発症からC30日までの範囲で,2週間以内が約C9割を占める3,4).MFSの感染因子はCCampylobacterjejuni,HaemophilusCin.uenzaeなどが知られている5).HaemophilusCin.uenzaeが感染因子として示唆された副鼻腔炎によるCMFSの報告もある6,7).本症例は上顎洞炎の原因菌の同定は行っていないが,上顎洞炎発症から半日以内に複視が出現しており,10日前の発熱の既往が先行感染として疑わしいと考えられた.本症例はCHess赤緑試験で左眼に上転障害も認められた.上転障害があれば上方視時にも複視を自覚すると考えられるが,複視は下方視時のみで認められている.正面視で上下斜視を認めていないことから,下転障害とともに上転も障害されていた可能性はあるが,下転障害に比べ軽度であったために視診および自覚的検査では検出できなかったと考えた.教科書的に後天性眼球運動障害の診断における問診には家族歴,既往歴,発症状況,日内変動,疼痛,全身疾患の有無などの記載がある8).しかし,先行感染の既往については見逃されやすいと考えられた.今回,左下直筋障害で発症し,全眼球運動障害へ進行したCMFSのC1例を経験した.後天性眼球運動障害の原因が判明してない段階では,MFSの可能性を考慮し,単筋の運動障害が疑われても先行感染の既往の聴取が臨床上簡便かつ重要であると考えた.文献1)Yano.CM,CDukerCJ:ParalyticCStrabismus.COphthalmologyC4thEdition,1225-1232,e2,ELSEVIER,London,20142)FisherCM:AnCunusualCvariantCofCacuteCidiopathicCpoly-neuritis(syndromeofophthalmoplegia,ataxiaandare.ex-ia).NEnglJMedC255:57-65,C19563)大野新一郎:Fisher症候群.あたらしい眼科30:775-781,2013染が示唆されたFisher症候群.日耳鼻C111:628-631,C4)大野新一郎,三村治,江内田寛:Fisher症候群C19例の2008臨床解析.日眼会誌119:63-67,C20157)小川雅也,古賀道明,倉橋幸造ほか:Haemophilusin.uen-5)KogaCM,CYukiCN,CTaiCTCetCal:MillerCFisherCsyndromeCzae感染の先行が示唆されたCFisher症候群のC1例.脳神経CandHaemophilusin.uenzaeinfection.NeurologyC57:686-54:431-433,C2002691,C20019)三村治:神経眼科診察法.神経眼科を学ぶ人のために,6)井上博之,古閑紀雄,石田春彦ほか:蝶形骨洞炎の先行感p17-18,医学書院,2014***

乳癌原発の転移性脈絡膜腫瘍に対し,ベバシズマブ硝子体内投与が奏効した1例

2017年9月30日 土曜日

《原著》あたらしい眼科34(9):1327.1329,2017c乳癌原発の転移性脈絡膜腫瘍に対し,ベバシズマブ硝子体内投与が奏効した1例堀内直樹*1,2,5富田洋平*1,5奥村良彦*2,4,5戸倉英之*3篠田肇*5坪田一男*5小沢洋子*5*1川崎市立川崎病院眼科*2足利赤十字病院眼科*3足利赤十字病院外科*4埼玉メディカルセンター眼科*5慶應義塾大学医学部眼科学教室CACaseofMetastaticChoroidalTumorSecondarytoBreastCancerTreatedbyIntravitrealBevacizumabNaokiHoriuchi1,2,5)C,YoheiTomita1,5)C,YoshihikoOkumura2,4,5)C,HideyukiTokura3),HajimeShinoda5),KazuoTsubota5)CandYokoOzawa5)1)DepartmentofOphthalmology,KawasakiMunicipalHospital,2)DepartmentofOphthalmology,AshikagaRedCrossHospital,3)DepartmentofSurgery,AshikagaRedCrossHospital,4)DepartmentofOphthalmology,SaitamaMedicalCenter,5)DepartmentofOphthalmology,KeioUniversitySchoolofMedicine乳癌原発の転移性脈絡膜腫瘍に対し,ベバシズマブ硝子体内投与が奏効したC1例を経験したので報告する.症例は67歳,女性で,初診時の矯正視力は右眼(0.5p),左眼(1.2)であり,両眼の眼底に漿液性網膜.離を伴う腫瘍を認めた.乳癌原発の転移性脈絡膜腫瘍と診断され,両眼に放射線療法を施行されたが,右眼は全網膜.離となり,視力は光覚弁となった.左眼の視力は(1.2Cp)を維持していたが腫瘍の大きさは変わらなかった.ベバシズマブC1.25Cmg硝子体内投与を両眼にそれぞれC2回施行した.初回の投与で両眼の網膜下液は減少し,左眼の腫瘍径は縮小した.2回目の投与後には,右眼の網膜下液のさらなる減少と,左眼の網膜下液の消失,および腫瘍による隆起の消失が得られた.本症例ではベバシズマブ硝子体内投与が乳癌原発の転移性脈絡膜腫瘍による滲出性変化の抑制と腫瘍の縮小に効果を示した.CWeCreportCtheCcaseCofCaC67-year-oldCfemaleCwithCbilateralCmetastaticCchoroidalCtumorsCsecondaryCtoCbreastcancertreatedbyintravitrealbevacizumabinjections.At.rstvisit,herbest-correctedvisualacuity(BCVA)was(0.5p)righteyeand(1.2)lefteye.Althoughbotheyeshadreceivedradiation,herrightBCVAdiminishedtolightperceptionduetototalretinaldetachment;herlefteyealsohadretinaldetachmentandtherewasnoreductionintumorCsizeCbutCherCleftCBCVACremained(1.2)atCthisCtime.CSheCtwiceCreceivedCbilateralCintravitrealCbevacizumab(IVB)injections(1.25mg)C.Afterthe.rstinjection,serousretinaldetachmentinbotheyesandtumorsizeinherlefteyedecreased.Afterthesecondinjection,serousretinaldetachmentwasfurtherreducedinbotheyes,andthetumorinherlefteyewas.attened.TheIVBwase.ectiveintreatingchoroidaltumorssecondarytobreastcancer.〔AtarashiiGanka(JournaloftheEye)C34(9):1327.1329,C2017〕Keywords:転移性脈絡膜腫瘍,ベバシズマブ,乳癌,滲出性網膜.離,腫瘍縮小.metastaticchoroidaltumor,bevacizumab,breastcancer,exudativeretinaldetachment,tumorregression.Cはじめに転移性脈絡膜腫瘍は,眼内の腫瘍のなかでもっとも頻度が高い1,2).原発巣としては肺癌や乳癌の比率が高く,両者で80%に及ぶ.眼底所見の特徴は,黄白色の扁平な円形隆起で,進行すると軽度から高度の滲出性網膜.離を伴うことがあり,黄斑部に網膜.離が及ぶと変視や視力低下をきたしうる.ベバシズマブ(AvastinCR,Genentech,USA)は,血管内皮細胞増殖因子(vascularCendothelialCgrowthCfactor:VEGF)に対するモノクローナル抗体で,VEGFファミリーのうち〔別刷請求先〕堀内直樹:〒210-0013神奈川県川崎市川崎区新川通C12-1川崎市立川崎病院眼科Reprintrequests:NaokiHoriuchi,M.D.,DepartmentofOphthalmology,KawasakiMunicipalHospital,12-1Shinkawadori,Kawasaki-ku,Kawasaki-shi,Kanagawa210-0013,JAPAN0910-1810/17/\100/頁/JCOPY(115)C1327VEGF-Aに結合し,VEGF-Aが受容体(VEGFR-1,VEGFR-2,ニューロピリン)に結合するのを阻害する.この結果,腫瘍血管新生,腫瘍増殖,転移の抑制効果があると考えられている3).眼科領域においてベバシズマブ硝子体内投与は適応外(o.Clabel)使用であるが,糖尿病網膜症4),網膜静脈閉塞症4),未熟児網膜症4),Coats病4)など,その病態に血管新生や血管透過性亢進が関与する疾患に対しての有効性が報告された.しかし,転移性脈絡膜腫瘍に対するベバシズマブ硝子体内投与の有用性を報告する例は,海外,国内ともに少数である5).今回筆者らは,乳癌を原発とする転移性脈絡膜腫瘍および随伴する滲出性網膜.離に対してベバシズマブ硝子体内投与を施行し,早期に滲出性網膜.離の減少および腫瘍の縮小が得られたので報告する.なお,本研究は足利赤十字病院倫理委員会の承認のもとに行われた.CI症例患者:67歳,女性.現病歴:2006年,足利赤十字病院外科で右乳癌と診断された.このときの臨床病期はCT2N0M0であり,化学療法(エ図1初診時の所見a:右眼の眼底写真.下方に広がる漿液性網膜.離を認める.Cb:左眼の眼底写真.アーケード上方,および耳側に円形の隆起病変を認める(.).c:左眼のCBモード超音波断層検査.耳側に充実性の隆起を認める.Cd:左眼のフルオレセイン蛍光眼底造影写真(早期).隆起部に一致して多発点状の過蛍光を認める(.).e:頭部CCT.右眼に充実した腫瘍病変を認める(.).左眼の腫瘍はこのスライスでは描出されていない.Cf:初診時からC1カ月後の左眼のCOCT所見.隆起性病変があり(.),網膜下液が出現し,黄斑部に迫っている.Cピルビシン+ドセタキセル)を施行後,同年C6月に乳房部分切除術+腋窩リンパ節郭清が施行された.病理結果から充実腺管癌と診断され,エストロゲン受容体(+),プロゲステロン受容体(C.),ヒト上皮成長因子受容体タイプC2(humanepidermalgrowthfactorreceptorType2:HER2)(1+)であった.外科手術後はホルモン療法(アロマターゼ阻害薬)後,1年にC1回程度の定期通院をしていた.2014年C2月頃より右眼の視野障害を自覚し,近医眼科で右網膜.離および脈絡膜腫瘍を指摘され,同年C3月に足利赤十字病院眼科を紹介され受診した.初診時所見:最高矯正視力は右眼C0.4(0.5pC×sph+2.25D(cyl.1.25DCAx90°),左眼0.9(1.2pC×(cyl.1.25DCAx80°)で,眼圧は右眼C12CmmHg,左眼C17CmmHgであった.前房内には異常がなく,軽度白内障を認めた.右眼の眼底には下方に広がる漿液性網膜.離を(図1a),Bモードエコー上では内部が均一な,充実性のドーム型の隆起病変を認めた.左眼の眼底には,アーケード耳側,および上方にそれぞれC4乳頭径,3乳頭径程度の黄白色の隆起病変を(図1b),Bモードエコー上では,右眼同様充実性の隆起病変を(図1c)認めた.初診時の左眼のCOCTでは,黄斑部耳側にドーム状の隆起がみられた.フルオレセイン蛍光眼底造影検査では,左眼に早期に腫瘍部に一致した境界明瞭で,内部が不均一な過蛍光を認め,また辺縁部は網膜下液に伴う低蛍光で縁取られていた(図1d).また,前医で施行された頭部CCTでは,両眼に内部均一なドーム状の高吸収域が確認された(図1e).以上の所見より,乳癌を原発とする転移性脈絡膜腫瘍および滲出性網膜.離と診断された.臨床経過:2014年C4月には右眼の網膜.離が進行して黄斑部に至り,最高矯正視力が(0.05)と低下した.左眼の腫瘍は増大し,漿液性網膜.離が増悪した(図1f).乳腺外科で施行された採血検査で血中のCCEAの急激な上昇を認めたため,ホルモン療法(アロマターゼ阻害薬)が再開された.また,両眼に合計C45CGy/25Cfrの放射線療法が施行された.その後COCT上,左眼の漿液性網膜.離は改善したが,腫瘍による隆起は縮小しなかった.5月初旬の受診時には右眼が全網膜.離になり,細隙灯顕微鏡による診察では,.離した網膜が水晶体の後方にまで迫っているのが確認された.その後も定期的な診察が継続されたが,7月の診察時には,右眼の視力は光覚弁となり,全網膜.離の状態に大きな変化はなかった.左眼の矯正視力は(1.2Cp)で,漿液性網膜.離はある程度改善したものの,腫瘍径は縮小しなかった.そこで滲出性変化の抑制および腫瘍径の抑制を期待して,2014年C10月に,インフォームド・コンセントを得たうえで,両眼に対し初回のベバシズマブC1.25Cmg硝子体内投与を施行した.1328あたらしい眼科Vol.34,No.9,2017(116)投与からC9日目の診察時には,右眼の漿液性網膜.離の丈は低下した.左眼眼底の腫瘍の隆起は縮小傾向であり,OCTにおいても左眼の隆起の縮小が確認された.同年C11月にC2回目のベバシズマブC1.25Cmgの硝子体注射を両眼に施行したところ,2015年C2月の診察時には,眼底所見上は左眼の隆起は消失し(図2a),FAG上では顆粒状の過蛍光の部位が縮小し(図2b),OCTでは,漿液性網膜.離の消失および隆起の平坦化を得た(図2c).このときの最高矯正視力は右眼C30Ccm手動弁(矯正不能),左眼(1.2p)であった.その後定期受診を予定していたが,本人の意向により2015年C4月以降は眼科を受診していない.なお,ベバシズマブ硝子体内投与後の観察期間において細菌性眼内炎,網膜.離,高眼圧,白内障などの眼局所の合併症,および脳血管疾患などの全身の合併症は生じなかった.CII考按本症例では,ベバシズマブ硝子体内投与により乳癌原発の転移性脈絡膜腫瘍に続発した滲出性網膜.離の減少,腫瘍の縮小が得られ,左眼の視力が維持された.Augustineらは,眼内転移性腫瘍に対する抗CVEGF薬の硝子体内投与により,59%の症例で視力の改善を,またC77%で腫瘍径の縮小を,45%で滲出性網膜.離の改善を得られたと報告した6).しかしながら,Maudgilらは,乳癌,肺癌,大腸癌の脈絡膜転移をきたしたC5例に対しベバシズマブの硝子体内投与を施行したが,4例において腫瘍の増悪,および視力の悪化がみられたことを報告している7).理由として,加齢黄斑変性や糖尿病黄斑浮腫と異なり,転移性腫瘍の場合,網膜色素上皮の障害は比較的軽度であり外側血液網膜関門(outerCblood-retinaCbarrier:outerCBRB)に障害をきたしていないため,ベバシズマブが脈絡膜にある腫瘍本体に到達しない可能性があると推察している7).本症例では漿液性網膜.離を伴っており,outerCBRBに障害をきたしていると考えられ,腫瘍本体へのドラッグデリバリーが良好であった可能性があった.脈絡膜転移は比較的放射線感受性が高いとされており,奏効率はC63.89%とされる8).しかし,本症例の場合,とくに左眼の漿液性網膜.離の進行がある程度抑えられ,視力が維持されたものの,両眼において腫瘍の縮小は得られず,右眼で滲出性変化の増悪を抑制することはできなかった.放射線療法は許容できる照射線量に限界があり,追加の照射をする場合,正常組織への放射線毒性が懸念される9).一方,ベバシズマブの硝子体内投与は繰り返し施行が可能であり,また治療の即効性,効果,副作用および治療の合併症の発症頻度を考えても,検討すべき治療法であるといえる10).現時点では脈絡膜転移は悪性腫瘍の末期における一徴候との認識があるが,従来に比較すると近年では抗癌剤をはじめ(117)図2ベバシズマブ硝子体内投与後(2回目)の所見a:左眼の眼底写真.隆起はほぼ消失している.Cb:左眼のフルオレセイン蛍光眼底造影写真(早期).顆粒状の過蛍光は縮小傾向である.c:左眼のCOCT所見.ほぼ平坦化している.Cとする癌治療の進歩により生命予後が長くなってきた.そのため転移性脈絡膜腫瘍をきたした患者も,その後のCqualityofvision(QOV)の維持や改善の重要性は今後も高まっていくものと考える.ベバシズマブ硝子体内投与が転移性脈絡膜腫瘍の患者のCQOVを改善する治療法の一つとなる可能性を,今後も研究する必要があると考える.文献1)FerryAP,FontRL:Carcinomametastatictotheeyeandorbit.I.Aclinicopathologicstudyof227cases.ArchOph-thalmolC92:276-286,C19742)BlochCRS,CGartnerCS:TheCincidenceCofCocularCmetastaticCcarcinoma.ArchOphthalmolC85:673-675,C19713)LienCS,CLowmanCHB:TherapeuticCanti-VEGFCantibodies.CHandbExpPharmacol181:131-150,C20084)木村修平,白神史雄:【抗CVEGF薬による治療】ベバシズマブのオフラベル投与.あたらしい眼科C32:1083-1088,C20155)稲垣絵海,篠田肇,内田敦郎ほか:滲出性網膜.離に対してベバシズマブ硝子体内投与が奏効した転移性脈絡膜腫瘍のC1例.あたらしい眼科C28:587-592,C20116)AugustineCH,CMunroCM,CAdatiaCFCetCal:TreatmentCofocularCmetastasisCwithCanti-VEGF:aCliteratureCreviewCandcasereport.CanJOphthalmolC49:458-463,C20147)MaudgilCA,CSearsCKS,CRundleCPACetCal:FailureCofCintra-vitrealCbevacizumabCinCtheCtreatmentCofCchoroidalCmetas-tasis.Eye(Lond)C29:707-711,C20158)荻野尚,築山巌,秋根康之ほか:脈絡膜転移の放射線治療.癌の臨床C37:351-355,C19919)ZamberCRW,CKinyounCJL:RadiationCretinopathy.CWestCJCMedC157:530-533,C199210)山根健:Therapeutics抗CVEGF薬でみる硝子体内薬物注射の基本硝子体注射によって起こりうる副作用・合併症.眼科グラフィックC2:165-168,C2013あたらしい眼科Vol.34,No.9,2017C1329